Math 22, Fall 2009
Here are two more puzzles from Discrete Mathematics, by Ensley and Crawley, 2006:
All the inhabitants on an island are either liars who never tell the truth, or Truthtellers you always tell the truth.
(1) You meet two inhabitants.

A says, "If B is truthful, then so am I."
B says, "At least one of us is lying."
Who (if anyone) is telling the truth?
(2) A says, "If B is truthful, then so am I."

B says, "A is lying."
Is this enough information to figure out who is telling the truth?
(3) Here are those proofs of the irrationality of $\sqrt{ } 2$. The first is by Stanley Tennenbaum, from the 1950 's. Assume $\sqrt{ } 2$ is the rational number a / b, in lowest terms. Then squaring both sides gives:

$$
\begin{gathered}
\sqrt{2}=\frac{a}{b} \\
2=\frac{a^{2}}{b^{2}} \\
2 b^{2}=b^{2}+b^{2}=a^{2}
\end{gathered}
$$

Here a and b are the smallest such integers with this property, since a / b is assumed to be in lowest terms. Can you use the diagram below and explain why this leads to a contradiction?

(4) Here is another proof along the same lines, this one a paper folding proof by John Conway and Richard Guy, similar to a proof in an 1892 Geometry text by Russian
mathematician A.P. Kiselev. Again, assume we have a right isosceles triangle with integer sides a and hypotenuse b, such that a / b is in lowest terms. How does the diagram help explain the proof?

