Here's the explanation of the case I showed in class: suppose that if a pile of size k is split into two piles of size r and s, then the product $(r+s)(r)(s)$ is computed. At the end, when all piles are size 1 , then those products are summed. If you try this a number of times, you will discover that when you start with n objects, you always end with final sum $n(n+1)(n-1) / 3$. Discovering this takes gathering data and looking for an overall pattern, you cannot do it without making this effort!!

So statement n, labeled $P(n)$ is: the final sum is $n(n+1)(n-1) / 3$.
Proof:
Basic Step: Start with $k=2$ (the theorem does not really make sense for $k=1$, unless we assume the sum is 0). Split it into two piles of size 1 . The product (and final sum) is $(1+1)(1)(1)=2$, which is also $=2(2+1)(2-1) / 3$.

Induction step: Assume the theorem has been proved for statements $P(2), P(3), \ldots, P(k-1)$. Now use those to prove that $P(k)$ is true. If you can do this, you have proved $P(n)$ is true for all $n>1$, by the strong principle of induction.

For $P(k)$, suppose we split the pile of size k into two piles of size j and $k-j$, for j any number from 1 to $\mathrm{k}-1$. The product at this step is then $[j+(k-j)] j(k-j)$. What happens to the piles of sizes j and $\mathrm{k}-\mathrm{j}$? Well, by the strong principle of induction we are assuming that they will give final sums of products of $\frac{j^{3}-j}{3}$ for the pile of size j , and $\frac{(k-j)^{3}-(k-j)}{3}$ for the pile of size $\mathrm{k}-\mathrm{j}$. Now we add all three of these terms to get the final sum for the case when we start with k objects:

$$
[j+(k-j)] j(k-j)+\frac{j^{3}-j}{3}+\frac{(k-j)^{3}-(k-j)}{3}
$$

Now we do some algebraic manipulations, as in class, and see that this actually reduces to:

$$
=(k-j)\left[k j+\frac{(k-j)^{2}-1}{3}\right]+\frac{j^{3}-j}{3}
$$

which further reduces, after more algebra, to

$$
=(k-j)\left[\frac{3 k j}{3}+\frac{k^{2}-2 k j+j^{2}-1}{3}\right]+\frac{j^{3}-j}{3}
$$

which, with a little more algebra, gives

$$
\begin{gathered}
=(k-j)\left[\frac{k^{2}+k j+j^{2}-1}{3}\right]+\frac{j^{3}-j}{3} \\
=\frac{k^{3}-j^{3}-(k-j)}{3}+\frac{j^{3}-j}{3} \\
=\frac{k^{3}-k}{3}
\end{gathered}
$$

But this is just the result we were looking for in the case $P(k)$. So by the principle of strong induction, since $P(2)$ is true, and since also $P(2), P(3), \ldots, P(k-1)$ together imply $P(k)$, the theorem must be true for all $k>1$.

