Math 1A (7:30am - 8:20am)
Group Quiz 5
Wed Oct 29, 2008

SCORE: ___ / 10 POINTS

Group Members' Names:

NO CALCULATORS ALLOWE

Prove that $\frac{d}{dx}\cos x = -\sin x$ from the definition of the derivative.

SCORE: /3 POINTS

You may use the two limits proved in class without reproving them.

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh h}{h} = \lim_{h \to 0} \frac{\sin x \sinh h}{h} = \lim_{h \to 0} \frac{\sin x \sinh h}{h} = \lim_{h \to 0} \frac{\cos x \cosh h}{h} = \lim_{h \to 0} \frac{\sin x \sinh h}$$

Find the derivatives of the function $f(x) = 5^{\tan 4x}$. SIMPLIFY YOUR ANSWER.

SCORE: ___/ 2 POINTS

SCORE: ___ / 2 POINTS

If
$$g(x)$$
 is the inverse of $f(x) = x^3 + x - 3$, find $g'(7)$.

$$\frac{1}{2} f(2) = 2^3 + 2 - 3 = 7$$

$$50 g(7) = 2$$

$$50 g'(7) = f'(2) = 3(2)^2 + 1 = 13$$

$$\frac{1}{3} \frac{1}{2} = 13$$

If $f(x) = \cos x$, find $f^{(75)}(x)$. You must explain why your answer is correct.

SCORE: /3 POINTS

If
$$f(x) = \cos x$$
, find $f^{(x)}(x)$. You must explain why your answer is correct.

$$f(x) = \cos x \qquad f(x) = -\cos x \qquad f(x) = -\cos$$

CLE OF DEPLIVATIVES REPEATS EVERY 4TH TIME

$$f^{(72)}(x) = f(x)$$

 $f^{(75)}(x) = f'''(x) = 5m x$