SCORE: ___ / 10 POINTS

NO CALCULATORS ALLOWE

Sketch two full periods of the graph of $v = 2\sec(2\pi x + \pi) + 3$.

Label the 3 y-coordinates and 9 x-coordinates discussed in class.

DIRECTION
$$\sqrt{}$$

 $-\frac{1}{2} + \frac{1}{4} = -\frac{1}{4} + \frac{1}{4} = -\frac{1}{4}$

$$-\frac{1}{4} + \frac{1}{4} = \frac{0}{4}$$

SEC GRAPH IN GREEN

ASYMPTOTES THROUGH

as HILLS = SEC VALLEYS

<u>In words</u>, describe the behavior of the graph of $y = \sec x$ as x approaches $\frac{\pi}{2}$ [a] from the left and [b] from the right.

NOTE: A graph of the function is NOT enough. You must describe it in words.

Consider the functions $y_1 = 1 - \frac{\cos 2\pi x}{2!}$ and $y_2 = 1 - \frac{\cos 2\pi x}{2!} + \frac{\cos 4\pi x}{4!}$, which approximate a sawtooth wave. Follow the pattern in the

terms and find 2 functions
$$y_3$$
 and y_4 which are better approximations.

$$y_3 = 1 - \cos 2\pi x + \cos 4\pi x - \cos 6\pi$$

$$y_4 = 1 - \cos 2\pi x + \cos 4\pi x - \cos 6\pi$$

$$y_4 = 1 - \cos 2\pi x + \cos 4\pi x - \cos 6\pi$$

SCORE: /2 POINTS