Group Members' Names:	
-----------------------	--

SCORE: ___/ 10 POINTS

CALCULATORS ALLOWE

Sketch two full periods of the graph of $y = 2\sec(2\pi x + \pi) + 3$. Label the 3 y-coordinates and 9 x-coordinates discussed in class.

$$y = 2\cos(2\pi x + \pi) + 3$$

PERLIOD = $\frac{2\pi}{2\pi} = 1 + \frac{1}{4} = \frac{1}$

DIRECTION
$$\sqrt{}$$

 $-\frac{1}{2} + \frac{1}{4} = -\frac{2}{4} + \frac{1}{4} = -\frac{1}{4}$

SCORE: / 6 POINTS

SEC GRAPH IN GREEN

POINT

ASYMPTOTES THROUGH MIDLINE -COS HILLS = SEC VALLEYS OS + SEC TOUCH AT HILLS

Consider the functions $y_1 = \sin \pi x - \frac{\sin 3\pi x}{3!}$ and $y_2 = \sin \pi x - \frac{\sin 3\pi x}{3!} + \frac{\sin 5\pi x}{5!}$, which approximate a sawtooth wave. Follow the pattern in the terms and find 2 functions y_3 and y_4 which are better approximations. SCORE: / 2 POINTS

$$y_3 = \sin \pi x - \frac{\sin 5\pi x}{3!} + \frac{\sin 5\pi x}{5!} - \frac{\sin 7\pi x}{7!} + \frac{3}{4}$$
 $y_4 = \sin \pi x - \frac{\sin 3\pi x}{3!} + \frac{\sin 5\pi x}{5!} - \frac{\sin 7\pi x}{7!} + \frac{\sin 9\pi x}{9!}$

In words, describe the behavior of the graph of $y = \cot x$ as x approaches π [a] from the left and [b] from the right.

NOTE: A graph of the function is NOT enough. You must describe it in words.

[b] y GOES TOWARDS - 00

SCORE: / 2 POINTS