



What day of the month is your birthday? What are the last 2 digits of your address? What are the last 2 digits of your zip code? What are the last 2 digits of your social security number? [IF YOU DO NOT HAVE A SOCIAL SECURITY NUMBER, USE YOUR STUDENT ID NUMBER1

## NO MATRIX-CAPABLE OR GRAPHING CALCULATORS ALLOWED ON THIS MIDTERM

Find the magnitude and direction angle of  $\mathbf{u} = -7\mathbf{i} - 7\mathbf{j}$ .

SCORE: \_\_\_ / 4 POINTS

$$||J|| = \sqrt{(-7)^2 + (-7)^2} = 7\sqrt{2}$$

$$\Theta = \tan^{-1}(-7) + \pi = \frac{\pi}{4} + \pi = \frac{\pi}{4}$$

Determine if the determinant equation  $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} kc - a & kd - b \\ c & d \end{vmatrix}$  is true or false.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\begin{vmatrix} kc - a & kd - b \\ c & d \end{vmatrix} = (kc - a)d - (kd - b)c$$

$$= ked - ad - kdc + bc$$

$$= -ad + bc$$

Vector **u** has magnitude 4 and direction angle  $\frac{4\pi}{3}$ . Vector **v** has magnitude 6 and direction angle  $\frac{5\pi}{6}$ .

Find the component form of  $\mathbf{u} + \mathbf{v}$ .

$$\vec{U} = \langle 4\cos \frac{\pi}{3}, 4\sin \frac{\pi}{3} \rangle = \langle 4(-\frac{1}{2}), 4(-\frac{1}{2}) \rangle = \langle -2, -2\sqrt{3} \rangle$$

$$\vec{V} = \langle 6\cos \frac{\pi}{3}, 6\sin \frac{\pi}{3} \rangle = \langle 6(-\frac{1}{2}), 6(-\frac{1}{2}) \rangle = \langle -3\sqrt{3}, 3 \rangle$$

$$\vec{U} + \vec{V} = \langle -2 - 3\sqrt{3}, 3 - 2\sqrt{3} \rangle$$

Find the angle between the vectors  $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j}$  and  $\mathbf{v} = -\mathbf{i} + 5\mathbf{j}$ .

SCORE: \_\_\_ / 6 POINTS

$$\Theta = \cos^{-1} \left( \frac{3}{3}, \frac{-2}{-2} \right) \cdot \left( \frac{-1}{5} \right) \\
= \cos^{-1} \left( \frac{-3}{3}, \frac{-2}{-2} \right) \cdot \left( \frac{-1}{5} \right) \\
= \cos^{-1} \left( \frac{-3}{3^2 + (-2)^2} \right) \cdot \left( \frac{-1}{5} \right) \\
= \cos^{-1} \left( \frac{-13}{13^7 \sqrt{26}} \right) \cdot \left( \frac{-1}{5} \right) \cdot \left( \frac{-1}{5} \right) \\
= \cos^{-1} \left( \frac{-13}{\sqrt{13^7 \sqrt{26}}} \right) \cdot \left( \frac{-1}{5} \right) \cdot \left($$

## DO NOT SOLVE YOUR SYSTEM OF INE

A point lies 3 units below the xy-plane, 2 units right of the xz-plane and 4 units behind the yz-plane.

SCORE: / 4 POINTS

What are the co-ordinates of the point? (-4, 2, -3)[a]

QUADRANT 2+4 = OCTANT 6 [b] In which octant does the point lie?

A line segment has endpoints (3, -2, 4) and (-2, -2, 1).

SCORE: /4 POINTS

Find the midpoint of the segment. [a]

$$\left(\frac{3-2}{2}, \frac{-2-2}{2}, \frac{4+1}{2}\right) = \left(\frac{1}{2}, -2, \frac{5}{2}\right)$$

Find the length of the segment. [b]

$$(3-2)^{2}+(-2-2)^{2}+(4-1)^{2}=5^{2}+0^{2}+3^{2}=534$$

Find the partial fraction decomposition of  $\frac{2x^3 - 3x^2 - 3}{x^4 + 1}$ . SCORE: \_\_\_/12 POINTS

$$\frac{2 \times ^{3} - 3 \times ^{2} - 3}{(x^{2} - D(x^{2} + 1))} = \frac{A}{(x + 1)(x - 1)(x^{2} + 1)} = \frac{A}{(x + 1)} + \frac{B}{(x + 1)(x^{2} + 1)}$$

$$\frac{2 \times ^{3} - 3 \times ^{2} - 3}{(x + 1)(x - 1)(x^{2} + 1)} + \frac{B}{(x + 1)(x^{2} + 1)}$$

$$+ C \times (x + 1)(x - 1) + D(x + 1)(x - 1)$$

$$\times = 1 - 4 = B(2 \times 2) \Rightarrow B = -1$$

$$\times = -1 - 8 = A(-2)(2) \Rightarrow A = 2$$

$$\times = 0 - 3 = A(-1)(1) + B(1 \times 1) + D(1)(-1)$$

$$-3 = -2 - 1 - 0 \Rightarrow D = 0$$

$$Coef of 2 = A + B + C$$

$$2 = 2 - 1 + C \Rightarrow C = 1$$

Determine if the vectors  $\langle 2, -6, -8 \rangle$  and  $\langle -1, 3, -4 \rangle$  are perpendicular, parallel or neither.

$$\langle 2,-6,-8 \rangle \cdot \langle -1,3,-4 \rangle = -2-18+32 \neq 0$$
 NOT  $\downarrow$   
 $\langle 2,-6,-8 \rangle = | k < 1,3,-4 \rangle$   
 $2=-k \Rightarrow k=-2$   
 $-6=3k$   
 $-8=-4| k \Rightarrow k=-2$  IMPOSSIBLE NOT  $//$ 

If  $\mathbf{u} = \langle 3, 2 \rangle$  and  $\mathbf{v} = \langle 1, -1 \rangle$ , write  $\mathbf{u}$  as the sum of two vectors, one parallel to  $\mathbf{v}$ , and one orthogonal to  $\mathbf{v}$ .

PROJ\_
$$\overrightarrow{U} = \overrightarrow{\overrightarrow{U}} \cdot \overrightarrow{\overrightarrow{V}} = \frac{3-2}{1+1} \langle 1, -1 \rangle = \frac{1}{2} \langle 1, -1 \rangle = \frac{1}{2}$$

Using determinants, determine if the matrix  $\begin{bmatrix} -4 & 0 & -2 & 7 \\ 2 & 4 & -1 & -3 \\ -8 & 0 & -4 & 1 \\ 6 & 0 & 3 & 0 \end{bmatrix}$  has an inverse.

SCORE: \_\_\_ / 10 POINTS

NO INVERSE

Vector **u** has initial point (-3, 1, -4) and terminal point (-6, -1, 2). Vector **v** has magnitude 8 and is in the same direction as **u**. Find **v**.

SCORE: \_\_\_ / 6 POINTS

## 

The vectors  $\mathbf{u}$  and  $\mathbf{v}$  are shown in the diagram below. Sketch (and clearly label) the vectors  $2\mathbf{v} + 3\mathbf{u}$  and  $3\mathbf{u} - \mathbf{v}$ . SCORE: \_\_\_\_ / 6 POINTS

3x-2y>-6 -2 y-1xT (0,0)?

Graph the solution of the system of inequalities  $2x + y \le 4$ . SCORE: \_\_\_/10 POINTS x + 2y < -6



Vector  $\mathbf{u}$  has magnitude 3 and direction angle  $140^{\circ}$ . Vector  $\mathbf{v}$  has magnitude 5 and direction angle  $80^{\circ}$ . Find  $\mathbf{u} \cdot \mathbf{v}$ . HINT: Sketch the vectors first.

SCORE: \_\_\_/ 8 POINTS

$$\frac{3}{140^{\circ}} = \frac{15}{2} = \frac{15$$

Find the center and radius of the sphere  $x^2 + y^2 + z^2 - 2x + 6y - 10z - 1 = 0$ .

SCORE: \_\_\_ / 6 POINTS

$$(x^2-2x+1)^2+6y+2^2-102=1$$
  
 $(x^2-2x+1)^2+(y^2+6y+9)+(2^2-102+25)=1+1+9+25$   
 $(x-1)^2+(y+3)^2+(2-5)^2=36$   
CENTER (1,-3,5) PADIUS 6

## © BONUS QUESTIONS ©

Find a  $3 \times 3$  matrix A with at least 7 non-zero entries such that |A| = 8.

SCORE: \_\_\_ / 5 POINTS

Find a vector  $\mathbf{u}$  with integer components such that the angle between  $\mathbf{u}$  and  $4\mathbf{i} + \mathbf{j}$  is  $45^{\circ}$ . HINT: This can be solved using a technique from Math 49A.

SCORE: \_\_/5 POINTS