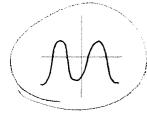
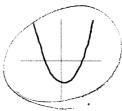

## Mon Jun 16, 2008


[1] The graph of the function f(x) is shown below. Sketch the graph of the inverse function.

[6 POINTS]

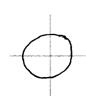


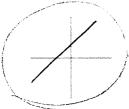

[2] Two of the graphs or tables below represent functions. Circle the two functions.

[6 POINTS]

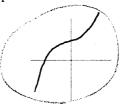








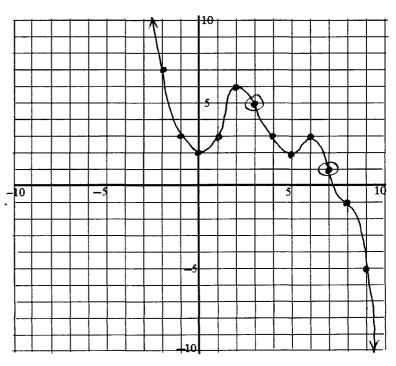


[3] Two of the graphs below represent <u>one-to-one</u> functions. Circle the two graphs.

[6 POINTS]

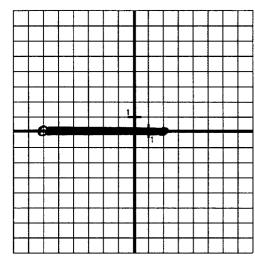












[4] Use the graph of the function f(x) to the right to fill in the blanks below.

[6 POINTS]

[a] 
$$f(3) = 5$$



[5] Which interval on x is graphed below? [4 POINTS]



$$(-6, 2]$$

If  $f(x) = 2x^2 - 4x + 1$ , find f(a-2). Simplify your answer. [6]

[7 POINTS]

$$f(a-2) = 2(a-2)^2 - 4(a-2) + 1$$

$$= 2(a^2 - 4a + 4) - 4a + 8 + 1$$

$$= 2a^2 - 8a + 8 - 4a + 8 + 1$$

$$= 2a^2 - 12a + 17$$

Find the inverse of the function  $f(x) = \sqrt{6-x} + 5$ . You do NOT need to simplify your answer. [7]

[7 POINTS]

$$y = \sqrt{6 - x} + 5$$

$$x = \sqrt{6 - y} + 5$$

$$x - 5 = \sqrt{6 - y}$$

$$(x - 5)^{2} = 6 - y$$

$$y = \sqrt{6-x^{2}+5}$$

$$x = \sqrt{6-(x-5)^{2}-6} = -y$$

$$x - 5 = \sqrt{6-(y)}$$

$$(x-5)^{2} = 6-(x-5)^{2}$$

$$(x-5)^{2} = 6-y$$

Find the exact solution of the equation  $3^{x+2} = 4^{x-1}$ . Also, use your calculator to find a decimal answer, [8] rounded to 4 decimal places

[10 POINTS]

$$\log 3^{x+2} = \log 4^{x-1}$$

$$(x+2) \log 3 = (x-1) \log 4$$

$$\times \log 3 + 2 \log 3 = x \log 4 - \log 4$$

$$\times \log 3 - x \log 4 = -2 \log 3 - \log 4$$

$$\times (\log 3 - \log 4) = -2 \log 3 - \log 4$$

$$\times (\log 3 - \log 4) = -2 \log 3 - \log 4$$

$$X = -2 \log 3 - \log 4 = 12.4565$$

- The number of bacteria in a colony is given by  $B(t) = 3.5(1.6)^t$ . At what time were there 51 bacteria? Round your answer to 1 decimal place.
- [10 POINTS]

$$51 = 3.5(1.6)^{t}$$

$$\frac{51}{3.5} = 1.6^{t}$$

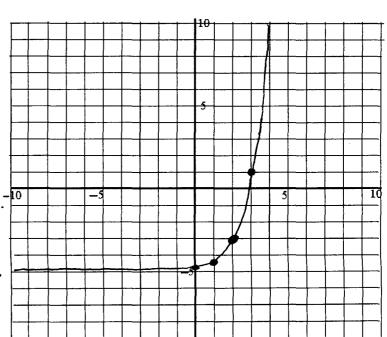
$$t = 1091.6 \frac{51}{3.5}$$

$$= 109\frac{51}{3.5}$$

$$= 1091.6$$

$$= 5.7$$

[10] Write  $\log \frac{a^3}{bc^2}$  as the sums and/or differences and/or multiples of logarithms of numbers or single variables. [5 POINTS]


[11] Write  $2 \log p - 3 \log m + \log n$  as the logarithm of a single quantity.

[5 POINTS]

$$\log \frac{p^2n}{m^3}$$

Draw the graph of the fuction  $f(x) = 2 \cdot 3^{x-2} - 5$ . Show the functions values of at least 4 points on your graph. [10 POINTS] LABEL ALL ASYMPTOTES CLEARLY.

| х    |   |  |
|------|---|--|
| f(x) | , |  |



ASYMPTOTE
y=-5