CALCULATORS ARE NOT ALLOWED ON THIS SECTION

Write both parts of the Fundamental Theorem of Calculus. DO NOT INCLUDE THE NET CHANGE THEOREM. [10 POINTS]

② IF
$$f$$
 is continuous and a is a constant, and $F(x) = \int_{a}^{x} f(t) dt$, Then $F'(x) = f(x)$

[10 POINTS] MULTIPLE CHOICE (NO PARTIAL CREDIT)

Estimate the area under the graph of f on the interval [2, 10] using 4 subintervals and midpoint evaluation.

[10 POINTS] MULTIPLE CHOICE (NO PARTIAL CREDIT)

If f is continuous, decreasing and concave up on [a, b], which of the following numerical integration methods give

answers less than $\int f(x) dx$?

- [A] left hand & midpoint right hand & midpoint [B] left hand & trapezoidal [C] [D]
- right hand & trapezoidal left hand & right hand [E] midpoint & trapezoidal

CORRECT ANSWER:

[10 POINTS] MULTIPLE CHOICE (NO PARTIAL CREDIT)

Estimate $\int f(x) dx$ using Simpson's Rule with n = 6.

What day of the month is your offinday !	 	
What are the last 2 digits of your address?	-	
What are the last 2 digits of your zip code?		

CALCULATORS ARE NOT ALLOWED ON THIS SECTION

[10 POINTS] Write both parts of the Fundamental Theorem of Calculus. DO NOT INCLUDE THE NET CHANGE THEOREM.

O IF f IS CONTINUOUS ON [a,b]
AND F IS ANY ANTI-DERIVATIVE OF f,
THEN
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

② IF
$$f$$
 is continuous and a is a constant, and $F(x) = \int_{a}^{x} f(t) dt$, Then $F'(x) = f(x)$

[10 POINTS] MULTIPLE CHOICE (NO PARTIAL CREDIT)

Estimate the area under the graph of f on the interval [3, 11] using 4 subintervals and midpoint evaluation.

[10 POINTS] MULTIPLE CHOICE (NO PARTIAL CREDIT)

If f is continuous, decreasing and concave down on [a, b], which of the following numerical integration methods give answers less than $\int_a^b f(x) \, dx$?

[A]	left hand & midpoint	[B]	right hand & midpoint		
[C]	left hand & trapezoidal	[D]	right hand & trapezoidal	LETTER OF	1
[E]	left hand & right hand	[F]	midpoint & trapezoidal	CORRECT ANSWER:	1

[10 POINTS] MULTIPLE CHOICE (NO PARTIAL CREDIT)

Estimate $\int_{0}^{12} f(x) dx$ using Simpson's Rule with n = 6.

$$x$$
 0 1 2 3 4 5 6 7 8 9 10 11 12 $f(x)$ (-2) 0 3 1 (-1) -2 1 3 2 0 1 12 (-2) 0 (-2) 1 12 (-2) 1 15 (-2) 1 16 (-2) 1 17 (-2) 1 16 (-2) 1 17 (-2) 1 18 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 19 (-2) 1 10 $(-2$

[15 POINTS] Let
$$g(t) = \int_{0}^{2t^2} \sqrt{x^3 + 1} \ dx$$
. Find $g'(1)$.

$$g'(t) = \int (2t^{2})^{3} + 1 \cdot 4t - \int (\ln t)^{3} + 1 \cdot t$$

$$g'(1) = \int 2^{3} + 1 \cdot 4 - \int 0^{3} + 1 \cdot 1$$

$$= \int q' \cdot 4 - \int 1 \cdot 1$$

$$= 3 \cdot 4 - 1 \cdot 1$$

$$= 12 - 1$$

[20 POINTS] Compute the exact area under the graph of f(x) = 10 - 3x on the interval [1, 3] using the limit of the right-endpoint

 $\Delta x = \frac{3-1}{3} = \frac{2}{3}$

$$\lim_{n\to\infty} \sum_{i=1}^{n} (10-3(1+\frac{2}{n}i)) \frac{2}{n}$$

$$= \lim_{n\to\infty} \sum_{i=1}^{n} (10-3(1+\frac{2}{n}i)) \frac{2}{n}$$

$$= \lim_{n\to\infty} \sum_{i=1}^{n} (10-3-\frac{6}{n}i) \frac{2}{n}$$

$$= \lim_{n\to\infty} \sum_{i=1}^{n} (7-\frac{6}{n}i)$$

$$= \lim_{n\to\infty} \frac{2}{n} (7n-\frac{3}{n}n(n+1))$$

$$= \lim_{n\to\infty} \frac{2}{n} (7n-3n-3)$$

$$= \lim_{n\to\infty} \frac{2}{n} (4n-3)$$

= 2.4

[45 POINTS] Evaluate the following integrals.

[a]
$$\int \frac{1}{2\sqrt{x+4}} dx$$

[b] $\int \frac{1}{3} (3\cos \frac{1}{2}x + \sin 2x - \sec x \tan x) dx$
 $U = x + 4$
 $x = 0 - 4$
 $\int \frac{1}{4} (3\cos \frac{1}{2}x + \sin 2x - \sec x \tan x) dx$
 $U = x + 4$
 $U = x + 4$

YOU MAY USE YOUR CALCULATOR ON THIS SECTION

[20 POINTS] Consider the definite integral $\int_{1}^{8} \frac{3}{\sqrt[3]{x}} dx$.

[a] What is the value of T_{20} ?

[b] What is the value of S_{12} ?

[c] Find the exact error in the approximation in [a].

$$\int_{1}^{8} 3 \times^{-\frac{1}{2}} dx$$

$$= 3 \cdot \frac{3}{2} \times^{\frac{3}{2}} \Big|_{1}^{8}$$

$$= \frac{9}{2} \left(8^{\frac{3}{2}} - 1^{\frac{3}{2}} \right)$$

$$= \frac{9}{2} \left(4 - 1 \right)$$

$$= \frac{27}{2}$$

[10 POINTS] Find bounds on the error when the Midpoint Rule with n = 10 is used to approximate $\int_{0}^{4} e^{2x} dx$.

$$|EM_{10}| \le \frac{K(4-1)^3}{24 \cdot 10^2}$$

$$= 4e^8(27)$$

$$= 2400$$

$$= 134,143$$

$$f = e^{2x}$$

 $f' = 2e^{2x}$
 $f'' = 4e^{2x}$
 $|4e^{2x}| \le 4e^{2(4)}$
 $= 4e^{8}$

OR 295.245 IF YOU USED € ≈ 3