Math 1B Midterm 3 Review

Let P be the region bounded by $y = 6x - x^2$ and y = x + 4.

Let Q be the region bounded by $y = 2x^2$ and $y = x^2 + 4$.

Let R be the region bounded by x = 0, y = x - 1 and y = 2 - 2x.

Let S be the region bounded by $x = y^2 - 1$ and y = x - 1.

Let T be the region bounded by $y = e^x$, y = 2 and x = 0.

Let U be the region bounded by $y = 2 \ln x$, y = 0, x = 0 and y = 2.

Complete the following tables.

:	VOLUME OF SOLID IF REGION IS REVOLVED AROUND							
REGION	AREA	x = -3		x = 5	y = -1		y = 10	
P								
Q								
REGION	AREA	x = 0	x = -2	x=3	y = -1	y = 2	y = 3	
R								
S								
T								
U								

	VOLUME IF REGION IS BASE OF SOLID AND CROSS SECTIONS PERPENDICULAR TO X-AXIS ARE						
REGION	SQUARES	SEMICIRCLES	EQUILATERAL TRIANGLES				
P							
Q			·				
R							
Т							

- [1] Find the area of the region between $y = x^2$ and y = 2x + 3 on [0, 4].
- [2] Find the area of the region between $y = 4 x^2$ and $y = x^2 2x$ on [0, 4].
- [3] Find the length of the curve $y = \frac{1}{8}x^4 + \frac{1}{4x^2}$ on [1, 2].
- [4] Find the length of the curve $y = e^{2x} + \frac{1}{16e^{2x}}$ on [0, 1].
- [5] Find the length of the curve $y = \int_{2}^{x} \sqrt{t^2 2t} dt$ on [2, 5].
- [6] Find the length of the curve $y = \int_{0}^{x} \sqrt{(t+1)(t+3)} dt$ on [0, 2].
- [7] Use your calculator to find the area of the surface generated by revolving $y = \frac{1}{x}$ on [1, 4] around the x-axis.
- Use your calculator to find the area of the surface generated by revolving $y = \ln x$ on [1, 4] around the x-axis.
- [9] A spherical tank of radius 4 feet containing water is buried underground, so that its center is 8 feet below ground level.
 - [a] Find the work done in pumping the water to ground level
 - [i] if the tank is full.
 - [ii] if the tank is half full.
 - [b] Find the work done in pumping the top half of the water to ground level if the tank is full.
- [10] Find the hydrostatic force on the window of an aquarium
 - [a] if the window is a circle of radius 1 foot with the center 10 feet below the surface of the water
 - [b] if the window is a semicircle of radius 1 foot with the flat side up and 10 feet below the surface of the water
 - [c] if the window is a triangle of height 1 foot and base 2 feet with the base up and 10 feet below the surface of the water
 - [d] if the window is a triangle of height 1 foot and base 2 feet with the base down and 10 feet below the surface of the water
- [11] If $f(x) = \frac{k}{x^2}$ is a probability density function for the random variable X on [1, 5],
 - [a] find the value of k
 - [b] find $P(2 \le X \le 4)$
 - [c] find the mean value of X
 - [d] find the median value of X
- [12] If $f(x) = kx^2$ is a probability density function for the random variable X on [1, 5],
 - [a] find the value of k
 - [b] find $P(2 \le X \le 4)$
 - [c] find the mean value of X
 - [d] find the median value of X