THIS IS A NO CALCULATOR QUIZ

[6 POINTS]

WHITE TO THE TOTAL THE TOTAL TO THE TOTAL TOT

The graph of y = f(x) is shown to the right.

(a) Write the <u>total</u> area between the x-axis and y = f(x) as an integral or a sum/difference of integrals.

DO NOT USE ABSOLUTE VALUES (ERIK'S TRICK)

POSITIVE

GREATER THAN

AREA UNDER X-AXIS ON [6,8]

2 POINTS

Write each expression below as a single integral.

(a)
$$\int_{1}^{8} f(x)dx - \int_{3}^{8} f(x)dx$$

$$\int_{1}^{3} f(x) dx$$

(b)
$$\int_{4}^{5} f(x)dx + \int_{1}^{4} f(x)dx$$

$$\int_{1}^{5} f(x) dx$$

[4 POINTS]

Write the definition of "definite integral":

THE DEFINITE INTEGRAL OF f ON [a,b] IS $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{i=1}^{n} f(x_{i}^{*}) \Delta x \text{ where } \Delta x = \frac{b-a}{n} \text{ and } \Delta x =$

THIS IS A NO CALCULATOR QUIZ

$$=(\frac{1}{2}(3+9)3)+(10(2))$$

[2 POINTS]

In each sentence below, circle the underlined word which completes the sentence correctly.

If f(x) is decreasing and concave up on [a, b],

- a Riemann sum with midpoint evaluation points will be MORE /(LESS than the area under f(x) on [a, b](a)
- a Riemann sum with left-endpoint evaluation points will be MORE V LESS than the area under f(x) on [a, b]

[2 POINTS]

MULTIPLE CHOICE (NO PARTIAL CREDIT)

Evaluate the Riemann sum of $f(x) = x^2 - 5x$ on [1, 9] using 4 subintervals, if the evaluation points are the midpoints of each subinterval.

42

LETTER OF CORRECT ANSWER:

2 BONUS POINTS

Sketch the graph of a continuous function f(x) such that the Riemann sum of f(x) on [a, b] using 2 subintervals is more than the area under f(x) on [a, b], regardless of whether the evaluation points are leftendpoints, midpoints or right-endpoints. HINT: TRY FIRST WITH 1 SUBINTERVAL.