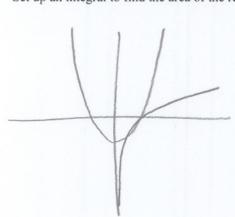
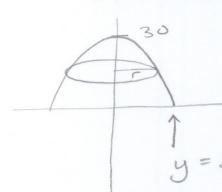

Code:
I forgot my code, so please charge me
two points: (Name)


[6 POINTS] The Luxor Hotel in Las Vegas is modeled after the pyramids of Egypt. The building is 350 feet high and its base is a square with sides of 646 feet. Find the volume of the building using an integral. (DO NOT USE fnInt.)

[5 POINTS] Find the area of the region bounded by the curves $y^2 = x + 1$ and $y = \frac{1}{2}x - 1$. (DO NOT USE fnInt.)



Set up an integral to find the area of the region bounded by the curves $y = x^2 - 1$ and $y = \ln x$. Use fnInt to find the area.

J.45076365) (ln x - (x2-1)) dx = (0,0563705145

The outline of a dome is given by $y = 30 - \frac{x^2}{120}$ for $-60 \le x \le 60$ (units of feet), with circular cross sections [6 POINTS] perpendicular to the y-axis. Find its volume exactly (ie. not a decimal approximation, not using fnInt).

$$A(y) = \pi r^{2} \text{ where } (r = \sqrt{120(30-y)})$$

$$= 120\pi (30-y)$$

$$y = 30 - \frac{x^{2}}{120}$$

$$\sqrt{9} = \sqrt{120} \sqrt{30} \sqrt{30} \sqrt{30} \sqrt{30} \sqrt{30} \sqrt{30}$$

 $x^2 = 120(30-y)$ = $120\pi \int_0^{30} (30-y) dy$ $x = \sqrt{120(30-y)}$ = $120\pi \left((30y - \frac{1}{2}y^2) \right)$

= 120 Tr (900 - 450)

= (54,000 \u0007 ft3)

MUST BE IN THIS FORM -NOT A DECIMAL