THIS IS A NO CALCULATOR QUIZ

How many loops/petals do the following rose-shaped curves have? [2 POINTS]

(a)
$$r = \sin 7\theta$$

(b)
$$r = \cos 6\theta$$

[11 POINTS] Test the following graphs for symmetry. SHOW YOUR WORK.

> $r = \cos \theta + \sin \theta$; symmetry over the polar axis (a)

$$r = \cos\theta + \sin\theta$$
; symmetry over the polar axis

$$T = \cos(-\theta) + \sin(-\theta)$$

(2) -r FOR r: $= \cos(\pi - \theta) + \sin(\pi - \theta)$ $\pi - \theta$ FOR θ : $= -\cos\theta + \sin\theta$ $= \cos\theta - \sin\theta$ (NO INFO)

(b)
$$r^2 = \cos 2\theta$$
; symmetry over $\theta = \frac{\pi}{2}$

 $\pi - \theta$ FOR θ : $F^2 = \cos 2(\pi - \theta)$ $F^2 = \cos (2\pi - 2\theta)$ $F^2 = \cos 2\theta \quad \text{SYMMETRIC}$

$$OR$$
 - r FOR r : $(r)^2 = cos(-20)'$
- θ FOR θ : $(r^2 = cos(20))'$ SYMMETRIC

 $r = \sec \theta$; symmetry through the pole

1/2 TOGETHER

[QUESTIONS ON OTHER SIDE]

[4 POINTS]

For what value(s) of θ does the graph of $r = 1 + 2\cos 2\theta$ pass through the pole?

1 POINT EACH

[4 POINTS]

The following table gives the approximate values of r for various values of θ for the graph $r=2\sin\theta-3$. In addition, the graph is symmetric over $\theta=\frac{\pi}{2}$. Sketch the entire graph.

θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
r	-5	-4.7	-4.4	-4	-3	-2	-1.6	-1.3	-1

1 POINT FOR CORRECT SHAPE