Math 1B (7:30am – 8:20am) Quiz 3 Fri Oct 9, 2009

SCORE: ___ / 20 POINTS

What month is your birthday?
What are the first 2 digits of your address?
What are the last 2 digits of your zip code?
What are the last 2 digits of your social security number?

[IF YOU DO NOT HAVE A SOCIAL SECURITY NUMBER,
USE YOUR STUDENT ID NUMBER]

NO CALCULATORS ALLOWED

To receive full credit, it should be clear how you arrived at all numerical and algebraic answers

State both parts of the Fundamental Theorem of Calculus.

SCORE: ___/ 4 POINTS

IF
$$f$$
 is cont. ON $[a,b]$ AND F is any ANTI-DERIVATIVE OF f , then $\int_a^b f(x) dx = F(b) - F(a)$

IF
$$f$$
 is cont. on [a,b] and $F(x) = \int_a^x f(t) dt$,
THEN $F'(x) = f(x)$

Make the substitution
$$u = x^{-2}$$
 for $\int_{-x^3}^{3} \frac{f(x^{-2})}{x^3} dx$. Your final answer should be an equivalent integral in u .

Make the substitution
$$u = x^{-1}$$
 for $\int \frac{dx}{x^3} dx$. Your for $\int \frac{dx}{x^3} dx$.

$$dx = -\frac{1}{2}x^3dU$$

$$\frac{f(x^{-2})}{x^{2}}dx = \frac{f(x^{2})}{x^{3}} \cdot -\frac{1}{2}x^{3}dv = -\frac{1}{2}f(x^{-2})dv = -\frac{1}{2}f(u)dv$$

$$-\frac{1}{2}\int_{\frac{\pi}{4}}^{9}f(u)dv = \frac{1}{2}\int_{\frac{\pi}{4}}^{9}f(u)dv = \frac{1}{2}\int_{\frac{\pi}{4}}^$$

Let
$$F(x) = \int_{1}^{e^{2x}} \sqrt{1+t^2} dt$$
.

[a] Find
$$F'(x)$$
.

$$F'(x) = \frac{d}{d(e^{2x})} \int_{1}^{e^{2x}} \sqrt{1+t^2} dt \cdot \frac{d(e^{2x})}{dx}$$

$$= \sqrt{1+(e^{2x})^2} \cdot 2e^{2x} = 2e^{2x} \sqrt{1+e^{4x}}$$

[b] Find the equation of the tangent line to
$$y = F(x)$$
 at $x = 0$.

$$F'(0) = 2e^{2(0)} 1 + e^{4(0)} = 20 \times 1 + 1 = 212 \times 2 = 20 \times 1 + 1 = 212 \times 2 = 20 \times 1 = 20 \times 1$$

Find
$$\int \frac{x^2}{\sqrt{1-x^6}} dx$$
.

SCORE: /3 POINTS

$$U = X^3, \frac{1}{2}$$

$$du = 3x^2 dx \frac{1}{2}$$

$$3du = X^2 dx$$

$$\frac{1}{3} \int \frac{1}{\sqrt{1-u^{2}}} du = \frac{1}{3} Sm^{-1} U + C = \frac{1}{3} Sm^{-1} \times^{3} + C$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2}$$

FORGOT "+C" [NO POINTS IF YOU DEMEMBERED IT]
SCORE: __/3 POINTS

Find
$$\int \frac{2x+5}{x-3} dx$$
.

$$\int \frac{2x+5^{2}}{x-3} dx = \int \frac{2(u+3)+5}{u} du$$

$$= \int \frac{2u+11}{u} du$$

$$= \int \frac{2u+11}{u} du$$

= 2(x-3)+11ln/x-31, = 2x+11ln/x-3/+C

= 20+11 ln | U + C

+ + BONUS IF YOU KNEW THE

"-6" COULD BE FORGOT"+C"
PART OF "+C" SCORE: __/3 POINTS

Find
$$\int_{1}^{e} \frac{\sqrt[3]{\ln x}}{x} dx$$
.

$$X=e \Rightarrow u=1$$

$$\int_{-\infty}^{e_{3}} \sqrt{\ln x} \, dx = \int_{-\infty}^{1} \sqrt{u} \, du = \int_{-\infty}^{1} u^{\frac{1}{3}} \, du = \frac{3}{4} u^{\frac{4}{3}} \Big|_{u=0}^{1} = \frac{3}{4}$$

$$\int_{0}^{1} u^{\frac{1}{3}} du = \frac{3}{4} u^{\frac{4}{3}} \Big|_{0}^{1} = \frac{3}{4}$$

 $\frac{4}{3}$ = $\frac{3}{4} (\ln e)^{\frac{4}{3}} - \frac{3}{4} (\ln 1)^{\frac{4}{3}} = \frac{3}{4} \cdot |^{\frac{4}{3}} - \frac{3}{4} \cdot 0^{\frac{4}{5}} = \frac{3}{4} \cdot 15 \text{ OK TOO}$

[MULTIPLE CHOICE] Which of the following statements does the Fundamental Theorem of Calculus guarantee is true?

(In other words, which statement satisfies all the "if" conditions of the theorem, and makes a valid conclusion based on the "then" part of the theorem ?)

[A]
$$\int_{-4}^{4} \frac{1}{x} \, dx = 0$$

[B] If
$$F(x) = \int_{1}^{x} \frac{1}{t} dt$$
, then $F'(4) = \frac{1}{4}$

[C] The average value of
$$f(x) = \frac{1}{x}$$
 on $[1, 4]$ is $\frac{1}{3} \ln 4$

[D] NONE OF THE ABOVE

LETTER OF CORRECT ANSWER: $[\ |\ \prec]$