<u>Math 114</u> <u>Sequences & Series / Linear Systems Review</u>

- [1] You must show the use of the appropriate sequence and/or series formulae.
 - [a] Find a_{36} for the arithmetic sequence $-28, -22, -16, -10, -4, \cdots$.
 - [b] Find a_{20} for the geometric sequence 5, -10, 20, -40, 80,
 - [c] Find a_{24} for the arithmetic sequence with $a_3 = 20$ and $a_{10} = -3$.
 - [d] Find the sum of the first 25 terms of the sequence in part [a].
 - [e] Find the sum of the first 15 terms of the sequence in part [b].
 - [f] Find the sum of the infinite geometric series $\frac{9}{20} \frac{3}{10} + \frac{1}{5} \cdots$.
 - [g] Convert 0.314141414... to a fraction.

[h] Find
$$\sum_{n=1}^{\infty} \frac{5}{2(3)^{n+1}}$$

- [2] You started a new job which paid \$3,000 per month. After exactly 6 years, you left the job.
 - [a] If you received a 0.3% raise each month, what was your monthly pay when you left ?
 - [b] If you received a \$10 per month raise each month, what was your monthly pay when you left?
 - [c] In part [a], how much were you paid during the 6 years ?
 - [d] In part [b], how much were you paid during the 6 years ?
- [3] You deposit \$2000 into your retirement account every year for 30 years. The account earns 4.5% interest compounded annually. How much is in the account after 30 years ?
- [4] Solve the system $\frac{2x-3y}{3x+4y} = 51$ using elimination.

ANSWERS

[1]	[a]	182	[b]	-2621440	[c]	-49		
	[d]	1100	[e]	54615	[f]	$\frac{27}{100}$		
	[g]	$\frac{311}{990}$	[h]	$\frac{5}{12}$		100		
[2] [3]	[a] 12750 (12-2)	3710.97 04.78	[b]	3710	[c]	240701.13	[d]	241560

[4] (13, 3)