YOU MUST SHOW LOGICAL, NEAT AND ORGANIZED WORK TO EARN FULL CREDIT

PUT A BOX AROUND YOUR FINAL ANSWER

Write 1.97×10^{-5} in standard notation.

SCORE: ___/ 4 POINTS

Write 81,700,000 in scientific notation.

SCORE: ___/ 4 POINTS

Write using fractional and/or negative exponents (where applicable).

[a]
$$\left(\sqrt[4]{n}\right)^5 = \left[\begin{array}{c} \sqrt{\frac{5}{4}} \end{array} \right]$$

[b]
$$\sqrt[7]{b^{21}} = \sqrt[2]{\frac{21}{7}} = \sqrt[3]{3}$$

$$\frac{1}{\sqrt{p^9}} = \sqrt{-\frac{\frac{q}{2}}{2}}$$

Perform the indicated operations and simplify. Write your final answers using fractional exponents.

SCORE: ___ / 20 POINTS

[a]
$$k^5 k^{\frac{3}{4}} = \sqrt{\frac{5+\frac{3}{4}}{4}}$$

= $\sqrt{\frac{20+3}{4}}$
= $\sqrt{\frac{23}{4}}$

[b]
$$\frac{w^{\frac{4}{5}}}{w^{\frac{2}{3}}} = \omega^{\frac{4}{5}} - \frac{2}{3}$$

$$= \omega^{\frac{12-13}{15}}$$

$$= \omega^{\frac{2}{15}}$$

[c]

[c]
$$\frac{\sqrt[4]{s}}{\sqrt[10]{s}} = \frac{S^{\frac{1}{4}}}{S^{\frac{1}{6}}}$$

= $S^{\frac{1}{4} - \frac{1}{6}}$
= $S^{\frac{5-2}{20}}$
= $S^{\frac{2}{20}}$

Find the equation of the circle with center (3, -7) and radius 9.

$$(x-3)^2 + (y+7)^2 = 81$$

SCORE: ___/6 POINTS

Find the distance between the points (7,-8) and (-1,-4). Write your final answer in simplest radical form. SCORE: ___/8 POINTS

Solve the equation $14 - 3\sqrt{g} = 2$ using algebra. Check your answer(s).

SCORE: ___ / 10 POINTS

$$-3\sqrt{g}^{2}=-12$$
 $\sqrt{g}^{2}=4$
 $\sqrt{g}^{2}=4^{2}$
 $\sqrt{g}^{2}=16$

CHECK:
$$14-3\sqrt{16}$$

= $14-3(4)$
= $14-12$
= 2 YES

Rationalize the denominator and simplify. Write your final answers using radicals.

[a]
$$\frac{8}{3\sqrt{10}} = \frac{8}{3\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}$$

= $\frac{48\sqrt{10}}{38}$ | 5
= $\frac{4\sqrt{10}}{15}$

[b]
$$\frac{10}{4-\sqrt{11}} = \frac{10}{4-\sqrt{11}} \cdot \frac{4+\sqrt{11}}{4+\sqrt{11}}$$

= $\frac{10(4+\sqrt{11})}{16-11}$
= $\frac{10(4+\sqrt{11})}{8}$
= $\frac{2(4+\sqrt{11})}{8}$

Perform the indicated operations and simplify. Write your final answers using radicals.

[a]
$$\sqrt{48} + \sqrt{75}$$

= $4\sqrt{3}' + 5\sqrt{3}'$
= $9\sqrt{3}'$

[b]
$$(2\sqrt{5} - \sqrt{6})(3\sqrt{3} + \sqrt{10})$$

= $6\sqrt{15} + 2\sqrt{50} - 3\sqrt{18} - \sqrt{60}$
= $6\sqrt{15} + 10\sqrt{2} - 9\sqrt{2} - 2\sqrt{15}$
= $4\sqrt{15} + \sqrt{2}$

$$\frac{\sqrt{3}}{\sqrt{54}} = \sqrt{\frac{3}{54}}$$

$$= \sqrt{\frac{3}{54}}$$

Find the center and radius of the circle $x^2 + y^2 - 10x + 12y + 12 = 0$.

$$x^2-10x+25+y^2+12y+36=-12+25+36$$

 $(x-5)^2+(y+6)^2=49$
CENTER: $(5,-6)$
RADIUS: 7

Solve the equation $m - \sqrt{2m-1} = 2$ using algebra. Check your answer(s).

SCORE: ___ / 14 POINTS

$$-\sqrt{2m-1} = 2-m$$

$$(-\sqrt{2m-1})^2 = (2-m)^2$$

$$2m-1 = 4-4m+m^2$$

$$0 = m^2-6m+5$$

$$0 = (m-1)(m-5)$$

$$m=1 or m=5$$

$$T = 2 - m$$
 $T = 2 - m$
 $T = 1 - \sqrt{2(1) - 1}$
 $T = 1 - \sqrt{17}$
 $T =$