You should be able to solve the following without a calculator

[1] Find the domains of the following functions.

[a]
$$f(x) = 4^x$$

[b]
$$f(x) = \log_3 x$$

[2] Find the ranges of the following functions.

[a]
$$f(x) = 5^x$$

[b]
$$f(x) = \log_7 x$$

Evaluate the following. Write "UNDEFINED" if the value does not exist. [3]

[b]
$$\log_6 36$$

$$[d]$$
 $\log_7 0$

[e]
$$\log_8 - 8$$

[f]
$$\log_6 1$$

$$\begin{array}{ccc}
 & \log_4 4^6 \\
\end{array}$$

$$[h] \hspace{1cm} log10000$$

[i]
$$\log_4 4^6$$

$$[j] \qquad \log_8 8^{-3}$$

$$[k]$$
 $3^{\log_3 7}$

[]]
$$\log_8 6$$

$$[k] 3^{\log_3 f}$$

[1]
$$6^{\log_6 0}$$

[m]
$$5^{\log_5 - 10}$$

$$[n]$$
 $10^{\log 5}$

[4] Find the exact solutions of the following equations. Check your answers.

[a]
$$3^{2-x} = 81$$

[b]
$$8^{3x-7} = 4^{6-x}$$

[c]
$$\log_4(5x+9) = 3$$

[d]
$$\log_3(x^2-7) - \log_3(1-x) = 1$$

[e]
$$\log_2(10x-2) - \log_2(x+1) = 3$$

[f]
$$\log(2x+6) + \log(x-2) = 2$$

[5] Write as the logarithm of a single quantity. Simplify your answer.

[a]
$$\log 8 + \log 5$$

$$[b]$$
 $\log 42 - \log 6$

[d]
$$3\log x + 2\log y$$

[e]
$$2\log x - \log y + \log z$$

[f]
$$\log z - 2\log y - \log x$$

[g]
$$2\log y + 3\log z - \log x$$

[h]
$$4\log z + \log x + 3\log y$$

Write as the sums and/or differences and/or multiples of logarithms of numbers or single variables. [6]

[a]
$$\log(7 \times 11)$$

[b]
$$\log\left(\frac{13}{5}\right)$$

[c]
$$\log 3^8$$

[d]
$$\log r^4 s$$

[e]
$$\log \frac{a^5}{b^2}$$

[f]
$$\log \frac{m}{n^2 p^3}$$

[g]
$$\log \frac{x^2}{\sqrt{yz}}$$

[7]

MULTIPLE CHOICE

The graph of $f(x) = 3\log(x+4)$ has an asymptote at [a]

[i]
$$x = 4$$

$$x = 4$$
 [ii] $x = -4$ [iii] $y = -4$ [iv] $y = 4$

iii]
$$y = -$$

$$[\mathbf{v}]$$
 $y = 4$

[v]
$$y = 3$$

[b] The graph of $f(x) = -5 \cdot 2^{x-3}$ has an asymptote at

[i] x = 3

[ii] x = 0

[iii] y = -5

[iv] y = 3

1

[v] y = 0

[c] For the logarithm curve $f(x) = \log_2 x$, as the value of $x \to \infty$, the value of $y \to \infty$

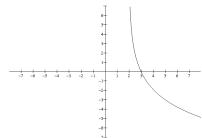
[ii] - c

[iii] (

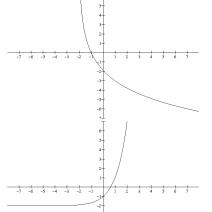
[iv]

 $[\mathbf{v}]$ -1

[d] For the logarithm curve $f(x) = \log_5 x$, as the value of $x \to 0$, the value of $y \to 0$

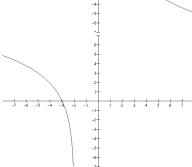

[ii] - ∝

[iii] 0


[iv] 1

 $[\mathbf{v}]$ -1

[8] The graph of $f(x) = -3\log_2(x+2)$ is



[b]

[a]

[c]

[d]

You may use a non-graphing calculator for the following

- [9] Draw the graph of $f(x) = -3 \cdot 2^{-(x-1)}$ by finding and plotting functions values, and connecting to get the shape of the graph. Show the functions values of at least 5 points on your graph. LABEL ALL ASYMPTOTES CLEARLY.
- [10] Find the exact solution of the following equations. Also, use your calculator to find a decimal answer, rounded to 4 decimal places.

[a] $7^x = 3$

[b] $6^{x-2} = 4^{x+1}$

- [11] The number of bacteria in a colony is given by $B(t) = 1.3(2.1)^t$.
 - [a] How many bacteria were there at time t = 4? Round your answer to 1 decimal place.
 - [b] At what time were there at least 41 bacteria? Round your answer to 2 decimal places.
- [12] [a] Find the intensity (in microns) of an earthquake with a Richter magnitude of 5.6.
 - [b] Find the Richter magnitude of an earthquake of intensity 56,000,000 microns.
- [13] [a] If you deposit \$200 into an account that pays 2.35% interest annually, what is the value of the account 3 years later?
 - [b] If you deposit \$200 into an account that pays 2.35% interest annually, when will the value of the account be \$300?
 - [c] How much should you deposit into an account that pays 2.35% interest annually, if you want the value of the account to be \$200 4 years later?
 - [b] You deposit \$200 into an account, and 5 years later, the value of the account is \$250. What is the annual interest rate on the account?

ANSWERS

[1]	[a]	all real numbers
[+]	լայ	an real numbers

[b]
$$\{x > 0\}$$

[2] [a]
$$\{y > 0\}$$

all real numbers [b]

2 [c]

- [e] UNDEFINED
- [b] 0

6

- 3 6

[d] **UNDEFINED**

[i]

[f] -3[j]

[g]

[h] 4

5

7 [k]

UNDEFINED [1]

- [m]UNDEFINED
- [n]

[a] [e]

3 [b] 7 [f]

11 [c]

-5 [d]

- 5 [a] log40

-2

log7 [b]

- log32 [c]
- $\log x^3 y^2$ [d]

- $\log \frac{x^2z}{y}$ [e]
- $\log \frac{z}{y^2 x}$ [f]
- $\log \frac{y^2 z^3}{x}$ [g]
- $\log z^4 x y^3$ [h]

[6] [a]

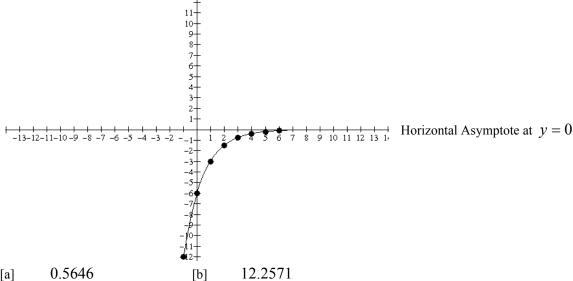
[4]

[5]

- log 7 + log 11
- log 13 log 5[b]
- 8 log 3 [c]
- $4\log r + \log s$ [d]

- $5\log a 2\log b$ [e]
- $\log m 2\log n 3\log p$ [f]

- $2\log x \frac{1}{2}\log y \frac{1}{2}\log z$ [g]
- [7] [8] [9] [a]-[ii]


[b]-[v]

[c]-[i]

[d]-[ii]

- - [b]

х	-1	0	1	2	3	4	5	6
f(x)	-12	-6	-3	-3/2	-3/4	-3/8	-3/16	-3/32

- [10] [a]

[b]

- 25.3 bacteria [11] [a]
- 4.65 units of time [b]
- 398107 microns [12] [a]
- \$214.43 [13] [a]
- 7.748 17.46 years later [b]
- \$182.25 [c]
- 4.564% [d]