Graphing guidelines for tangent, cotangent, secant and cosecant graphs:

TO GRAPH ONE PERIOD OF $y = a \tan(bx + c) + d$:

Period = π/b Midline y = dPhase Shift = -c/b

At $x =$ Phase Shift	y = Midline
At $x =$ Phase Shift + $\frac{1}{4}$ Period	y = Midline + a
At $x =$ Phase Shift – ¹ / ₄ Period	y = Midline - a
At $x =$ Phase Shift $\pm 2 * \frac{1}{4}$ Period	vertical asymptote

TO GRAPH ONE PERIOD OF $y = a \cot(bx + c) + d$:

Period = π/b Midline y = dPhase Shift = -c/b

At $x =$ Phase Shift	vertical asymptote
At $x =$ Phase Shift + $\frac{1}{4}$ Period	y = Midline + a
At $x =$ Phase Shift + 2 * $\frac{1}{4}$ Period	y = Midline
At $x =$ Phase Shift + 3 * $\frac{1}{4}$ Period	y = Midline - a
At $x =$ Phase Shift + 4 * $\frac{1}{4}$ Period	vertical asymptote

TO GRAPH $y = a \csc(bx + c) + d$:

Graph $y = a \sin (bx + c) + d$ At every point where the sine graph crosses its Midline Between vertical asymptotes: if sine graph has a hill if sine graph has a valley vertical asymptote hill (touching hill)

TO GRAPH $y = a \sec(bx + c) + d$:

Graph $y = a \cos(bx + c) + d$ At every point where the cosine graph crosses its Midline vertical asymptotes Between vertical asymptotes: if cosine graph has a hill if cosine graph has a valley hill (touching hill)