SCORE: / 140 POINTS

What month is your birthday? What are the first 2 digits of your address? What are the last 2 digits of your zip code? What are the last 2 digits of your social security number? [IF YOU DO NOT HAVE A SOCIAL SECURITY NUMBER, **USE YOUR STUDENT ID NUMBER!**

NO CALCULATORS ALLOWED ON THIS SECTION

Fill in the following values.

SCORE: / 6 POINTS

[a]
$$\tan 45^\circ =$$

[b]
$$\cos 60^{\circ} = \frac{1}{2}$$

[c]
$$\csc 30^\circ = 2$$

$$\sin 60^\circ = \frac{3}{2}$$

[e]
$$\cot 30^\circ = \sqrt{3}$$

[f]
$$\sec 45^\circ = \sqrt{2}$$

Complete the following table of values for the quadrantal angle -180° .

SCORE: ___ / 6 POINTS

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
-180°	0	s 1 .	0	UNDEF	10-1	UNDEF

MULTIPLE CHOICE: Which of the following statements is true?

SCORE: ___/6 POINTS

$$sec 46^{\circ} < sec 43^{\circ}$$

[b]
$$\cot 46^\circ > \cot 43^\circ$$

$$\cot 46^{\circ} > \cot 43^{\circ}$$
 [c] $\sin 46^{\circ} < \cos 43^{\circ}$

LETTER OF CORRECT ANSWER:

Find the six trigonometric function values for an angle in standard position with terminal side 4x + 3y = 0, $x \le 0$. SHOW YOUR WORK.

SCORE: / 10 POINTS

$$4(-3)+3(4)=0$$

 $x=-3$

$$x=-3$$
 $Sm\theta=\frac{4}{5}$ $CSC\theta=\frac{5}{4}$

$$y=4$$

 $r=\sqrt{(3)^2+4^2)}$ $\cos\theta=-\frac{3}{5}$ $\sec\theta=-\frac{5}{3}$
 $r=\sqrt{(3)^2+4^2)}$ $=\frac{1}{2}$ $=\frac{4}{3}$

$$\cos \theta = -\frac{3}{5}$$

Use an identity (NOT x, y and r) to find $\sec \theta$ if $\tan \theta = 6$ and $\csc \theta < 0$. SHOW YOUR WORK.

SCORE: / 6 POINTS

Sec
$$\Theta = \pm \sqrt{37}$$

$$Sec\theta = \pm \sqrt{37} \quad \Theta \text{ in } Q_3 \Rightarrow Sec\theta < O$$

$$Sec\theta = -\sqrt{37}$$

Find the six trigonometric function values for 840°. SHOW YOUR WORK.

SCORE: ___/10 POINTS

$$840^{\circ} - 360^{\circ} * 2 = 120^{\circ} \text{ in } Q_{2}$$
 $60^{\circ} \left\{ \frac{1}{120^{\circ}} \right\} = 50^{\circ} \text{ sm} \theta = \frac{\sqrt{3}}{2} \text{ csc} \theta = \frac{2\sqrt{3}}{3}$
 $\cos \theta = -\frac{1}{2} \text{ sec} \theta = -2$
 $\tan \theta = -\sqrt{3} \text{ cot} \theta = -\frac{\sqrt{3}}{3}$

Find all values of
$$\theta$$
 in $[0^{\circ},360^{\circ}]$ such that $\cos\theta = -\frac{1}{2}$. SHOW YOUR WORK.

SCORE: ___/10 POINTS

Find one solution for the equation
$$\tan(3\alpha + 20^\circ) = \cot(2\alpha - 10^\circ)$$
. SHOW YOUR WORK.

SCORE: ___ / 10 POINTS

$$3x+20^{\circ}=90-(2x-10^{\circ})$$

 $3x+20^{\circ}=100-2x$
 $5x=80^{\circ}$
 $x=16^{\circ}$

Find the five remaining function values of θ if $\cot \theta = -\frac{3}{2}$ and θ is in quadrant IV. SHOW YOUR WORK. SCORE: ___/10 POINTS

$$Sm \Theta = -\frac{2\sqrt{13}}{13} \quad CSC\Theta = -\frac{\sqrt{13}}{2}$$

$$-2 + \sqrt{2} \quad COS\Theta = \frac{3\sqrt{13}}{13} \quad SEC\Theta = \frac{\sqrt{13}}{3}$$

$$X = 3 \quad y = -2 \quad tan \Theta = -\frac{2}{3}$$

$$Y = \sqrt{3^2 + (-2)^2} = \sqrt{3}$$

What month is your birthday?

What are the first 2 digits of your address?

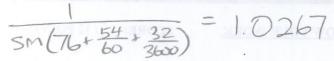
What are the last 2 digits of your zip code?

What are the last 2 digits of your social security number?

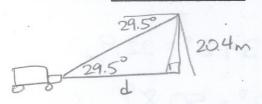
[IF YOU DO NOT HAVE A SOCIAL SECURITY NUMBER,

USE YOUR STUDENT ID NUMBER]

CALCULATORS ALLOWED ON THIS SECTION


Convert 73.3907° to degrees, minutes and seconds. SHOW YOUR WORK.

SCORE: ___/ 5 POINTS

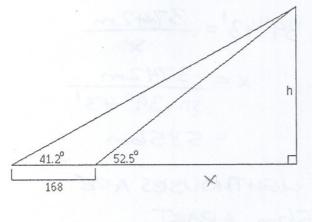

$$73^{\circ} + 0.3907 * 60' = 73^{\circ} 23.442'$$

= $73^{\circ} 23' + 0.442 * 60''$
= $73^{\circ} 23' 26.52''$

Find csc 76°54′32" to 4 decimal places. SHOW WHAT YOU TYPED IN YOUR CALCULATOR.

SCORE: / 4 POINTS

The angle of depression from the top of a 20.4*m* tall television tower to a utility truck is 29.5°. How far is the SCORE: ___/ 12 POINTS truck from the tower? SHOW YOUR WORK.



$$tan 29.5° = \frac{20.4m}{d}$$

$$d = \frac{20.4m}{tan 29.5°} = 36.1m$$

THE TRUCK IS 36.1 m FROM THE TOWER

Find h in the diagram. SHOW YOUR WORK.

SCORE: __/12 POINTS tam $52.5^{\circ} = \frac{h}{x} \implies h = x + \tan 52.5^{\circ}$ tan $41.2^{\circ} = \frac{h}{x+168} \implies h = (x+168) + \tan 41.2^{\circ}$ $x + \tan 52.5^{\circ} = (x+168) + \tan 41.2^{\circ}$ $x + \tan 52.5^{\circ} = x + \tan 41.2^{\circ} + 168 + \tan 41.2^{\circ}$ $x + \tan 52.5^{\circ} - x + \tan 41.2^{\circ} = 168 + \tan 41.2^{\circ}$ $x + \tan 52.5^{\circ} - \tan 41.2^{\circ}$ $x + \tan 52.5^{\circ} - \tan 41.2^{\circ}$

Find a value of θ in $\begin{bmatrix} 0^{\circ}, 90^{\circ} \end{bmatrix}$ such that $\cot \theta = 2.7$. Round your answer to 4 decimal places. SHOW WHAT SCORE: ___ / 5 POINTS YOU TYPED IN YOUR CALCULATOR.

$$tan \Theta = \frac{1}{2.7}$$
 $\theta = tan' \frac{1}{2.7} = 20.3231°$

Solve the right angle triangle ABC if $C = 90.0^{\circ}$, $A = 39.2^{\circ}$ and b = 28.1. SHOW YOUR WORK.

SCORE: ___/ 12 POINTS

$$cos 39.2^{\circ} = \frac{28.1}{c}$$

$$c = \frac{28.1}{cos 39.2^{\circ}} = 36.3$$

$$tan 39.2^{\circ} = \frac{a}{28.1}$$

$$a = 28.1 tan 39.2^{\circ} = 22.9$$

$$B = 90^{\circ} - 39.2^{\circ} = 50.8^{\circ}$$

Two lighthouses are located on a north-south line. From lighthouse A, the bearing of a ship 3742m away is SCORE: ___ / 12 POINTS $129^{\circ}43'$. From lighthouse B, the bearing of the ship is $39^{\circ}43'$. Find the distance between the lighthouses. SHOW YOUR WORK.

A
$$129^{\circ}43^{\circ}$$
 $-180^{\circ}-129^{\circ}43^{\prime}=50^{\circ}17^{\prime}$

×
 $180^{\circ}-(50^{\circ}17^{\prime}+39^{\circ}43^{\prime})$

B $39^{\circ}43^{\prime}=180^{\circ}-90^{\circ}$
 $=90^{\circ}$

$$\sin 39^{\circ}43' = \frac{3742m}{x}$$

$$x = \frac{3742m}{\sin 39^{\circ}43'}$$

$$= 5856m$$

THE LIGHTHOUSES ARE 5856m APART