YOU MUST SHOW LOGICAL, NEAT AND ORGANIZED WORK TO EARN FULL CREDIT

PUT A BOX AROUND YOUR FINAL ANSWER

SCORE: ___ / 6 POINTS

[a]
$$\sqrt[3]{n^7} = \sqrt{\frac{7}{3}}$$

$$[b] \qquad \frac{1}{\sqrt{p^9}} = \boxed{} - \frac{q}{2}$$

SCORE: ___/35 POINTS

[a]
$$\sqrt{10h^7}\sqrt{6h^4}$$

= $\sqrt{60h''}$
= $2h^5\sqrt{15h'}$

[b]
$$\sqrt{75x^9} - 4x^2\sqrt{27x^5}$$

= $5 \times \sqrt[4]{3} \times - 4 \times \sqrt{2} (3 \times \sqrt{2} \sqrt{3} \times \sqrt{2})$
= $5 \times \sqrt[4]{3} \times - 12 \times \sqrt{4} \sqrt{3} \times \sqrt{2}$
= $(-7 \times \sqrt{4} \sqrt{3} \times \sqrt{2})$

[c]
$$\sqrt{6}(4\sqrt{2}-\sqrt{15})$$

= $4\sqrt{12}-\sqrt{90}'$
= $4(2\sqrt{3})-3\sqrt{10}'$
= $8\sqrt{3}'-3\sqrt{10}'$

[d]
$$\sqrt{72c^9t^{10}y^3}$$

= $6c^4t^5y\sqrt{2cy}$

[e]
$$\sqrt{45} + \sqrt{80}$$

= $3\sqrt{5} + 4\sqrt{5}$
= $7\sqrt{5}$

[3] Find the distance between the points
$$(5,-7)$$
 and $(-1,-3)$.

SCORE: / 6 POINTS

Write your final answer in simplest radical form.

$$d = \sqrt{(5 - 1)^{2} + (-7 - 3)^{2}}$$

$$= \sqrt{6^{2} + (-4)^{2}}$$

$$= \sqrt{36 + 16} = \sqrt{52} = 2\sqrt{13}$$

[a]
$$\frac{\sqrt{7}}{\sqrt{140}}$$

$$= \sqrt{\frac{1}{140}}$$

$$= \sqrt{\frac{1}{20}}$$

$$= \sqrt{\frac{1}{20}}$$

$$= \sqrt{\frac{5}{10}}$$

Solve the equation
$$11 - 2\sqrt{3 - 2j} = 5$$
 using algebra. Check your answer(s). $-2\sqrt{3 - 2j} = -6$ CHECK: $|1 - 2|$

$$-2\sqrt{3-2j'} = -6$$

$$\sqrt{3-2j'} = 3$$

$$3-2j = 9$$

$$-2j = 6$$

$$1 = (-3)$$

[5]

CHECK:
$$|1-2\sqrt{3}-2(-3)|$$

= $|1-2\sqrt{3}|$
= $|1-2\sqrt{3}|$
= $|1-6|$
= 5

[6] Simplify. Write your final answers using fractional exponents.

SCORE: ___ / 10 POINTS

[a]
$$\frac{\sqrt[4]{s}}{\sqrt[6]{s}}$$

= $\frac{\sqrt[4]{s}}{\sqrt[6]{s}}$
= $\frac{\sqrt[4]{s}}{\sqrt[6]{s}}$
= $\frac{\sqrt[4]{s}}{\sqrt[6]{s}}$
= $\frac{\sqrt[4]{s}}{\sqrt[6]{s}}$
= $\frac{\sqrt[4]{s}}{\sqrt[6]{s}}$
= $\frac{\sqrt[4]{s}}{\sqrt[4]{s}}$

[b]
$$k^{\frac{2}{3}}k^{\frac{3}{5}}$$

$$= k^{\frac{2}{3}} + \frac{3}{5}$$

$$= k^{\frac{2}{3}} + \frac{3}{5}$$

$$= k^{\frac{10}{15}} + \frac{9}{15}$$

[7] If
$$f(x) = 2 - 4\sqrt{1-x}$$
, find $f(-3)$.

$$f(-3) = 2 - 4 \sqrt{1 - (-3)}$$

$$= 2 - 4 \sqrt{4}$$

$$= 2 - 4(2)$$

$$= 2 - 8$$

$$= (-6)$$

[8] Find the domain of
$$f(x) = 3 - \frac{2}{5x+4}$$
.

[9] Find the range of
$$f(x) = 6 - \sqrt{5 - x}$$
.

$$\sqrt{5-x} > 0$$
 $-\sqrt{5-x} \le 0$
 $6-\sqrt{5-x} \le 6$
 $y \le 6$

If
$$f(x) = 4 - 2x - x^2$$
, find $f(a-3)$. Simplify your answer.

$$f(a-3) = 4-2(a-3)-(a-3)^{2}$$

$$= 4-2a+b-(a^{2}-ba+9)$$

$$= 4-2a+b-a^{2}+ba-9$$

$$= (a^{2}+4a+1)$$

SCORE: ___ / 6 POINTS

SCORE: ___/7 POINTS

SCORE: ___/7 POINTS

$$y = 7 + \sqrt{5 - x}$$

$$y - 7 = \sqrt{5 - x}$$

$$(y - 7)^{2} = 5 - x$$

$$(y - 7)^{2} - 5 = -x$$

$$5 - (y - 7)^{2} = x = f^{-1}(y)$$

$$(f^{-1}(x) = 5 - (x-7)^2)$$

Circle the 2 graphs which represent one-to-one functions. [12]

[13] Circle the 2 graphs which represent functions.

Sketch the inverse of the function shown below. [14]

SCORE: ___/5 POINTS