NO CALCULATORS ALLOWED

WRITE THE LETTER OF THE CORRECT ANSWER IN THE SPACE PROVIDED DO NOT CIRCLE THE ANSWERS

The graph of $f(x) = \log_2(-(x-2))+1$ is

SCORE: ___/6 POINTS

LETTER OF CORRECT ANSWER: [A]

For the function $f(x) = \left(\frac{2}{5}\right)^x$, as the value of $x \to \infty$, the value of $y \to \infty$

SCORE: ___ / 3 POINTS

[A] -1

[B] (

[C]

[D] - \infty

[E] \(\alpha \)

LETTER OF CORRECT ANSWER: [3]

The graph of $f(x) = -5^{x-2} + 4$ has an asymptote at

SCORE: ___/3 POINTS

[A] y = 4

[B] y = 2

[C] x = -4

[D] x =

[E] x = -

For the function $f(x) = \log_7 x$, as the value of $x \to 0$, the value of $y \to 0$

SCORE: ___/3 POINTS *

[A] -1

[B] 0

[D]

LETTER OF CORRECT ANSWER: []

The graph of $f(x) = -\log_4(x-3) + 6$ has an asymptote at

SCORE: __/3 POINTS

[A] y = -3 [B] y = 6

x = 6[C]

x = -6

x = 3

LETTER OF CORRECT ANSWER:

For the function $f(x) = \log_3 x$, as the value of $x \to \infty$, the value of $y \to \infty$

SCORE: ___/3 POINTS

[A] '-1 [B] 0

[C] 1 [D]

[E]

LETTER OF CORRECT ANSWER: [

For the function $f(x) = 2.5^x$, as the value of $x \to \infty$, the value of $y \to \infty$

SCORE: ___/3 POINTS

[A] -1

[2]

[B]

[C] 1

[D]

[E]

LETTER OF CORRECT ANSWER: [E]

The range of $f(x) = \log_9 x$ is _____

SCORE: ___/3 POINTS

The domain of $f(x) = 8^x$ is _____ [b]

SCORE: ___/3 POINTS

The domain of $f(x) = \log x$ is $\times > 0$. [c]

SCORE: ___/3 POINTS

The range of $f(x) = 9^x$ is ______. [d]

SCORE: ___/3 POINTS

Evaluate the following. Write "UNDEFINED" if the value does not exist. [3]

SCORE: /30 POINTS

 $\log_{7} 7^{6} = 6$ [a]

6 log 0 = UNDEFINED [b]

[c] $\log_5(-25) = UNDEFINED$

 $\log_9 1 = \bigcirc$ [d]

[e] $\log_4 64 = 3$

[f] log10000 = 4

 $\log_3 3^{-4} = -4$ [g]

 $10^{\log 8} =$ [h]

 $\log_{16} 4 = \frac{1}{2}$

 $\log_3 \frac{1}{9} = -2$ [j]

YOU MUST SHOW LOGICAL, NEAT AND ORGANIZED WORK TO EARN FULL CREDIT

PUT A BOX AROUND YOUR FINAL ANSWER

[4] Write $\log y - 3\log z + 2\log x$ as the logarithm of a single expression.

SCORE: ___/5 POINTS

[5] Write $\log \frac{y^3}{\sqrt[4]{zx}}$ as the sums / differences / multiples of logarithms of numbers or single variables.

SCORE: ___/ 5 POINTS

[6] Find the exact solutions of the following equations algebraically. Check your answers.

SCORE: ___/ 18 POINTS

[a]
$$8^{2x+6} = 4^{1-x}$$

 $(2^3)^{2x+6} = (2^2)^{1-x}$
 $2^{3(2x+6)} = 2^{2(1-x)}$
 $3(2x+6) = 2(1-x)$
 $6x+18 = 2-2x$
 $8x = -16$

CHECK:

$$8^{2(-2)+6} = 8^{-4+6} = 8^2 = 64$$

 $4^{1-(-2)} = 4^3 = 64$

[b]
$$\log_2(x^2-9) - \log_2(x-2) = 3$$

 $\log_2 \frac{x^2-9}{x-2} = 3$
 $\frac{x^2-9}{x-2} = 2^3 = 8$
 $x^2-9 = 8x-16$
 $x^2-8x+7=0$
 $(x-1)(x-7)=0$

x=-2

CHECK: $X=1: log_{2}(-8)$ UNDEFINED NOT A SOLUTION $X=7: log_{2} 40 - log_{2} 5$ $= log_{2} 8$ = 3

NOTE OF THE STREET OF THE STRE

seoke __sketyrs

crosses and objects place the agency from a country of the company of the company

TXP (0)

SCORE SPONSES

3139 y = 1 / logiz = 2 log x

scolut. ___inobs

stemperator for 3 (the stringle more to perception to the more transfer to

4-9-8 = 4-6-14 S = 6-4-15 CLCC A = 6-4

Steel Sand

0 - A 1 - 3 - 3 - 4 -

d sol - Paul T-x

Y pote