TUTORS: THIS IS A TAKE HOME QUIZ

Prove the following derivatives using the limit definition of the derivative. You may use any $\underline{\text{limits}}$ already proven in class, but you may $\underline{\text{NOT}}$ use any known derivatives.

- [a] The derivative of $f(x) = \cos x$ is $f'(x) = -\sin x$.
- [b] The derivative of $f(x) = \tan x$ is $f'(x) = \sec^2 x$.

TUTORS: THIS IS A TAKE HOME QUIZ

Prove the following derivatives using the quotient rule. You may use the known derivatives of $\sin x$ and $\cos x$.

- [a] The derivative of $f(x) = \csc x$ is $f'(x) = -\csc x \cot x$.
- [b] The derivative of $f(x) = \cot x$ is $f'(x) = -\csc^2 x$.

TUTORS: THIS IS A TAKE HOME QUIZ

If
$$f(x) = x + \sin x$$
, and $g(x) = f^{-1}(x)$, find $g'\left(1 + \frac{\pi}{2}\right)$.

TUTORS: THIS IS A TAKE HOME QUIZ

If $f(x) = x + \cos x$, and $g(x) = f^{-1}(x)$, find $g'(\pi - 1)$.

TUTORS: THIS IS A TAKE HOME QUIZ

A table of values for a differentiable function f are given below.

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
f(x)	5	3	1	-1	-2	1	-2	3	-1	-3	-4	-1	2	3	1	2	-1	-2	1	4	-2

- [a] If g(x) = f(f(x)), estimate g'(7).
- [b] If $h(x) = f(\sqrt{x})$, estimate h'(16).
- [c] If $k(x) = \sqrt{f(x)}$, estimate k'(19).
- [d] If $m(x) = \frac{1}{f(x)}$, estimate m'(11).

TUTORS: THIS IS A TAKE HOME QUIZ