[1]
$$f(x) = x^6 e^{-3x}$$

[2]
$$f(x) = x^{\frac{4}{3}} - 2x^{\frac{2}{3}}$$

For each function,

[b]

- [a] find all critical numbers.
 - find the intervals over which the function is increasing / decreasing.
- [c] find the intervals over which the function is concave up / concave down.
- [d] what does the SECOND DERIVATIVE TEST tell you about each critical number you found?
- [e] find all inflection points.

TUTORS: THIS IS A TAKE HOME QUIZ

The graph of f'(x) is shown below. **NOTE:** It is **NOT** the graph of f(x).

f'(x)

TUTORS: THIS IS A TAKE HOME

Answer the following questions about f(x) without sketching f(x). Explain <u>very briefly</u> why your answers are correct.

- [a] Estimate all critical numbers of f(x).
- [b] Estimate the intervals over which f(x) is increasing.
- [c] Estimate the intervals over which f(x) is decreasing.
- [d] Estimate the x-coordinate(s) of all local minima of f(x).
- [e] Estimate the x-coordinate(s) of all local maxima of f(x).
- [f] Estimate the intervals over which f(x) is concave up.
- [g] Estimate the intervals over which f(x) is concave down.
- [h] Estimate the x-coordinate(s) of all inflection points of f(x).