SCORE: _____/ 101 POINTS

NO CALCULATORS ALLOWED

Fill in the blanks. Write "UNDEFINED" if the value does not exist. [NO NEED TO SHOW WORK]

SCORE: ___ / 21 POINTS

$$4^{\log_4 3} =$$

$$\log_3 0 = 0$$
 $\log_2 64 = 6$ $\log_4 3 = 3$ $\log_9 9^{-3} = -3$

$$log_8 1 =$$

$$\log_8 1 = 2^{\log_2(-8)} = 2^{\log_2(-8)} \log_{-8} 10000 = 2^{\log_2(-8)}$$

Circle the graph of the inverse of the following function.

Circle the two graphs below which represent one-to-one functions.

Circle the domain of $f(x) = \log_5 x$.

SCORE: ___ / 3 POINTS

$$\{x > 0\}$$

$${x > 5}$$

$$\{x \neq 5\}$$

 $\{x \neq 0\}$

Circle the asymptote of $f(x) = 5^x$.

SCORE: ___ / 3 POINTS

[a]
$$x = 0$$
 [b]

$$y = 1$$

$$y = 0$$

$$[d] x = 5$$

[e]
$$y = 5$$

→→→ PUT A BOX AROUND EACH FINAL ANSWER

Find the range of the function $f(x) = 2 - \sqrt{5 + x}$. SHOW PROPER WORK.

SCORE: ___ / 6 POINTS

$$\sqrt{5+x} \ge 0$$

 $-\sqrt{5+x} \le 0$
 $-\sqrt{5+x} + 2 \le 0 + 2$
 $\{y \le 2\}$

Find the equation of the asymptote of $f(x) = 8\log_3(x+6)$. SHOW PROPER WORK.

$$x+6=0$$
 $x=-6$

Find the inverse of the function $f(x) = 3 - \sqrt{6 - x}$. **SHOW PROPER WORK.**

$$y = 3 - \sqrt{6 - x'}$$

$$x = 3 - \sqrt{6 - y'}$$

$$(x - 3)^{2} = (-\sqrt{6 - y'})^{2}$$

$$(x - 3)^{2} = 6 - y$$

$$(x - 3)^{2} = 6 - y$$

Find the domain of the function $f(x) = \frac{5}{4x + 8} + 9$. **SHOW PROPER WORK.**

$$4x+8\neq0$$
 $4x\neq-8$
 $\{x\neq-2\}$

Write $\log 60 - \log 3 + \log 4$ as the logarithm of a single quantity. Simplify your answer.

$$\log \frac{69}{3} + \log 4$$

= $\log (\frac{69}{3} \cdot 4) = \log 80$

Write $\log \frac{w^4}{zy^5}$ as the sums and/or differences and/or multiples of logarithms of single variables.

Solve for x: $8^{x+7} = 4^{-x-2}$. **SHOW PROPER WORK.** CHECK YOUR ANSWER(S).

$$(2^{3})^{x+7} = (2^{2})^{-x-2}$$

$$2^{3(x+7)} = 2^{2(-x-2)}$$

$$3(x+7) = 2(-x-2)$$

$$3x+21 = -2x-4$$

$$5x = -25$$

$$x = -5$$

CHECK:
$$8^{-5+7} = 8^2 = 64$$
. $4^{-(-5)-2} = 4^3 = 64$

Solve for x: $\log_3(x^2 - 22) - \log_3(x - 4) = 2$. SHOW PROPER WORK, CHECK YOUR ANSWER(S). SCORE: ___ / 12 POINTS

$$\begin{vmatrix}
 \log_3 \frac{x^2 - 22}{x - 4} &= 2 \\
 3 \frac{x^2 - 22}{x - 4} &= 3^2 \\
 \frac{x^2 - 22}{x - 4} &= 9$$

$$\frac{x^2 - 22}{x - 4} &= 0$$

$$\frac{x^2 - 22}{x - 4} &= 0$$