SCORE: ____/ 101 POINTS

NO CALCULATORS ALLOWED

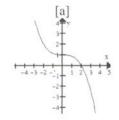
Fill in the blanks. Write "UNDEFINED" if the value does not exist. [NO NEED TO SHOW WORK]

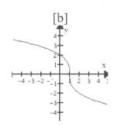
SCORE: ___ / 21 POINTS

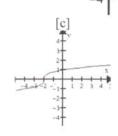
$$2^{\log_2 0} = 0$$
 $\log_2 32 = 5$ $\log_9 9^0 = 0$ $\log_{13} 1 = 0$

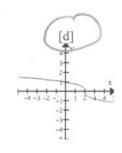
$$\log_2 32 = 5$$

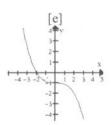
$$\log_0 9^0 = \bigcirc$$

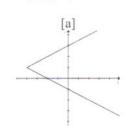

$$\log_{13} 1 = \underline{\hspace{1cm}}$$

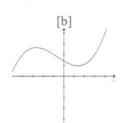

$$3^{\log_3 4} =$$

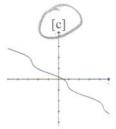

$$\log_3 - 9 =$$
 UNDEFINED $3^{\log_3 4} =$ $\log 100,000 =$ 5

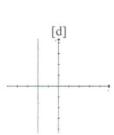

Circle the graph of the inverse of the following function.

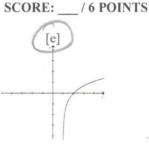











Circle the two graphs below which represent one-to-one functions.

Circle the asymptote of $f(x) = 3^x$.

SCORE: ___/3 POINTS

$$y = 3$$
 [b]

$$x = 0$$

[c]
$$x = 3$$

[d]
$$y = 1$$

$$y = 0$$

Circle the domain of $f(x) = \log_2 x$.

SCORE: ___/3 POINTS

[a]
$$\{x \neq 2\}$$

$$\mathbf{R} \qquad [c] \qquad \{x \neq 0\}$$

 ${x > 0}$

[e]
$$\{x > 2\}$$

$\Rightarrow \Rightarrow \Rightarrow \Rightarrow$

PUT A BOX AROUND EACH FINAL ANSWER

Find the range of the function $f(x) = 3 - \sqrt{6 - x}$. SHOW PROPER WORK.

$$-\sqrt{6-x} \stackrel{>}{<} 0$$

 $-\sqrt{6-x} \stackrel{<}{<} 0$
 $-\sqrt{6-x} + 3 \stackrel{<}{<} 0 + 3$
 $\frac{{\{4 \leq 3\}}}{{\{4 \leq 3\}}}$

SCORE: ___/ 6 POINTS

Find the equation of the asymptote of $f(x) = 6\log_8(x+3)$. SHOW PROPER WORK.

$$\begin{array}{c} x+3=0 \\ \boxed{x=-3} \end{array}$$

Find the inverse of the function $f(x) = 2 - \sqrt{5 + x}$. **SHOW PROPER WORK.**

$$y = 2 - \sqrt{5 + x}$$

$$x = 2 - \sqrt{5 + y}$$

$$x - 2 = -\sqrt{5 + y}$$

$$(x - 2)^{2} = (-\sqrt{5 + y})^{2}$$

$$(x - 2)^{2} = 5 + y$$

Find the domain of the function $f(x) = \frac{7}{3x+12} + 5$. **SHOW PROPER WORK.**

$$3x+12\neq0$$

 $3x\neq-12$
 $\{x\neq-4\}$

Solve for x:
$$8^{x+6} = 4^{-x-1}$$
. SHOW PROPER WORK. CHECK YOUR ANSWER(S).
 $(2^3)^{x+6} = (2^2)^{-x-1}$ CHECK!
 $3^3(x+6) = 2^3(-x-1)$ $3^3(x+6) = 2^3(-x-1)$ $4^{-4+6} = 8^3 = 4^3(-x-1)$ $3^3(x+6) = 2^3(-x-1)$ $4^{-4+6} = 4^3(-x-1)$ $4^{-4+6} = 4^3(-$

Write $\log 54 - \log 9 + \log 3$ as the logarithm of a single quantity. Simplify your answer.

Write $\log \frac{y^3}{wz^4}$ as the sums and/or differences and/or multiples of logarithms of single variables.

Solve for x: $\log_3(x^2 - 22) - \log_3(x - 4) = 2$. SHOW PROPER WORK, CHECK YOUR ANSWER(S). SCORE: ___ / 12 POINTS

$$\log_{3} \frac{x^{2}-22}{x^{-4}} = 2$$

$$3^{\log_{3} \frac{x^{2}-22}{x^{-4}}} = 3^{2}$$

$$\frac{x^{2}-22}{x^{-4}} = 9$$

$$x^{2}-22 = 9(x-4)$$

$$x^{2}-22 = 9x-36$$

$$x^{2}-9x+14=0$$

$$(x-2)(x-7)=0$$

x = 2.7