| Math 1A (7:30am - 8:20am) | |---------------------------| | Midterm 1 Version B | | Tue Oct 12, 2010 | NAME YOU ASKED TO BE CALLED: SCORE: ___ / 150 POINTS ## NO CALCULATORS OR DIFFERENTIATION SHORTCUTS (FROM CH 3) ALLOWED SHOW PROPER CALCULUS-LEVEL ALGEBRAIC WORK AND USE PROPER NOTATION Give the definition of "horizontal asymptote". SCORE: ___ / 6 POINTS SEE QUIZ 3 SOLUTION Find the equations of the horizontal asymptotes of $f(x) = \frac{7 - 3e^x}{\sqrt{4e^{2x} + 6}}$. SCORE: ___ / 15 POINTS SEE VERSION A KEY Let $$f(x) = \begin{cases} x^{-1} & \text{if } x < 1 \\ x^2 - 2 & \text{if } 1 < x < 4 \\ 3x + 2 & \text{if } x > 4 \end{cases}$$ SCORE: ___ / 20 POINTS Find all discontinuities of f(x) and classify each as removable, jump or infinite. Justify your answer algebraically, without using a graph. [b] Give the practical meaning (including units) of g'(12) = -9. SEE VERSION A KEY [c] Is there a value of s_0 for which you would expect $g'(s_0) > 0$? Why or why not? The graph of f(x) is shown below. Find all x -coordinates where f'(x) is undefined, and explain briefly why. SCORE: ___/10 POINTS Find the equations of the vertical asymptotes of $f(x) = \frac{1-x}{x^3 - 4x^2 + 4x}$. SCORE: ___/ 18 POINTS Find the values of both one-sided limits at each vertical asymptote. When showing your "work", you may use the shorthand notation shown in class. SEE VERSION A KEY The position of an object (in feet) at time t minutes, is given by the function $s(t) = \frac{t}{\sqrt{t+6}}$. SCORE: ___ / 18 POINTS Find the instantaneous velocity of the object at time t = 3. Specify the units. ## STUDENT'S CHOICE: Circle the question you want to be graded If no question is circled, only Choice #1 will be graded CHOICE #1: SCORE: ___ / 12 POINTS State both the Squeeze Theorem and the Intermediate Value Theorem. SEE QUIZ 3 SOLUTIONS ## CHOICE #2: SCORE: ___ / 12 POINTS One of the three statements below can be proven using the Intermediate Value Theorem (IVT). Circle the statement that can be proven using the IVT, and write the proof. Statement #1: $$f(x) = \frac{x^4 - x - 1}{x^2 - 9}$$ has a zero in the interval $[-2, 4]$. Statement #2: $$f(x) = \frac{x^4 - x - 1}{x^2 - 9}$$ has a zero in the interval $[-2, 2]$. Statement #3: $$f(x) = \frac{x^4 - x - 1}{x^2 - 9}$$ has a zero in the interval $[-2, 0]$. [a] Find $\frac{dy}{dx}$. [b] Find the equation of the tangent line to the graph above at x = 2. The graph of f(x) is shown below. Sketch a graph of f'(x) on the same axes. SCORE: ___ / 18 POINTS