
Math 1A
Midterm 2 Review

You should be able to find any derivative from this chapter.
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3.6 2-30, 37-50
3.REV 1-50

The question for section 3.9 will be one of the textbook or class examples, or assigned homework problems, but with different constants.

Knowing how to find derivatives is not enough, because once again, there will be very few questions which 
simply ask you to find a derivative. You should also be able to solve all the following types of problems.

[1] Estimate 5.0csc  using a linear approximation chosen at an appropriate point.

[2] If 
2

1

x
y  , find dx , y  and dy  if 2x  and 5.0x .

[3] Find x
dx

d
sec

3

3

. Simplify your answer.

[4] The position of an object at time t  is given by the function 
t

tt
ts

342
)(

23 
  for 0t .

[a] Find the velocity of the object at time 1t .

[b] Find the acceleration function. Simplify your answer.

[5] Find the equations of the tangent lines to the curve 31 xy   that are perpendicular to 112  yx .

[6] The line 43  xy  is tangent to a quadratic function at the point )1,1(  . Find the equation of the tangent line to the quadratic

function at )4,2( .

[7] If 
2

3

1
)(

x

x
xf


 , find )1(f  .

[8] The following table gives values and derivatives of two functions at various inputs.

x –3 –2 –1 0 1 2 3 4

)(xf –2 0 2 4 –3 –1 1 3

)(xf  4 –1 –3 2 –4 3 –2 1

)(xg –1 1 3 –3 4 –2 0 2

)(xg  2 4 –4 –1 3 1 –3 –2

[a] If )()( 3 xfxxk  , find the equation of the tangent line to )(xky   at 2x .

[b] If 
)(

)(
2

xf

x
xj  , find the equation of the tangent line to )(xjy   at 1x .

[c] If ))((tan)( 1 xgxm  , find the equation of the tangent line to )(xmy   at 3x .



[d] If ))(()( xfgxn  , find the equation of the tangent line to )(xny   at 4x .

[9] If )()()( xgxfxh  , find formulae for )(xh   and )(xh  . Based on your answers, guess a formula for )()4( xh  (the fourth

derivative of )(xh .

[10] Find all x -coordinates in the interval ]2,0[  where the tangent line to xxxf tan34)(   is horizontal.

[11] If )()( 2xxgxf  , find a formula for )(xf  . Your answer may involve g , g   and/or g  .

[12] Find the equation of the tangent line to yexyx 4532 )1(   at )0,1( .

[13] Show that 4axy   and byx  22 4 are orthogonal trajectories. See section 3.5, questions 59-62.

[14] If xxy
1

)(sin , find 
dx

dy
.

[15] The limit 
h

eeh h

h

 



1

0

)1(
lim  is the derivative of some function )(xf  at some point ax  . Find the function, the point, and the

value of the limit.

[16] Prove that xxx cotcsc)(csc   using the definition of the derivative.

Do not use the product, quotient or chain rules, nor the derivative of xsin .

You must also know the following definitions, theorems and proofs.

Definition e
Proofs derivatives of xsin , xcos , xtan , xcsc , xsec  and xcot  (see [16] above)

using the definition of the derivative, without using the derivatives of any other trigonometric function

you may use the limits 1
sin

lim
0


 h

h
h

 and 0
1cos

lim
0




 h

h
h

 without proving them

derivatives of xtan , xcsc , xsec  and xcot
using the quotient rule with the derivatives of xsin  and xcos

derivatives of x1sin  , x1cos , x1tan  , and xln
using implicit differentiation with the derivatives of xsin , xcos , xtan  and xe
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The question for section 3.9 will be one of the textbook or class examples, or assigned homework problems, but with different constants.


Knowing how to find derivatives is not enough, because once again, there will be very few questions which simply ask you to find a derivative. You should also be able to solve all the following types of problems.
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Find the velocity of the object at time 
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[b]
Find the acceleration function. Simplify your answer.
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Find the equations of the tangent lines to the curve 
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You must also know the following definitions, theorems and proofs.
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