Math 1A	(7:30am - 8:20am)
Midterm	3
Wed Dec	1, 2010

NAME YOU ASKED TO BE CALLED: _____

SCORE: / 150 POINTS

NO CALCULATORS ALLOWED SHOW PROPER WORK / USE PROPER NOTATION / SIMPLIFY YOUR ANSWERS

Rolle's Theorem applies to <u>only one</u> of the following situations. Find the one situation where Rolle's Theorem SCORE: _____/ 15 POINTS applies, and explain <u>very briefly</u> why Rolle's Theorem does not apply to all the other situations.

SITUATION	WRITE "APPLIES" IF ROLLE'S THEOREM APPLIES <u>OR</u> EXPLAIN <u>VERY BRIEFLY</u> WHY ROLLE'S THEOREM DOES NOT APPLY	
$f(x) = x^{\frac{5}{3}}$ on $[-1, 1]$	$f(-1) = -1 \neq f(1) = 1$	
$f(x) = x^{\frac{4}{3}}$ on $[-1, 1]$	APPLIES	
$f(x) = x^{\frac{2}{3}}$ on $[-1, 1]$	f'(x) = = = x-= f'(0) DNE (NOT DIFF.)	
$f(x) = x^{-\frac{2}{3}}$ on $[-1, 1]$	f(0) DNE (NOT CONT.)	

[b]

= 00

 $\lim_{x\to 0^+} (2-x)^{\frac{1}{x}} \qquad \qquad 2^{\infty}$

Find the following limits.

SCORE: ____/ 22 POINTS

[a]
$$\lim_{x\to 0^{+}} (2-e^{x})^{\csc x}$$

$$\lim_{x\to 0^{+}} \ln (2-e^{x})^{\csc x}$$

$$= \lim_{x\to 0^{+}} \csc x \ln (2-e^{x}) \quad \text{so } 0$$

$$= \lim_{x\to 0^{+}} \frac{\ln (2-e^{x})}{\sin x}$$

$$= \lim_{x\to 0^{+}} \frac{1 \ln (2-e^{x})}{\sin x}$$

$$= \lim_{x\to 0^{+}} \frac{1 \ln (2-e^{x})}{\cos x}$$

Let
$$f(x) = \frac{x^2 - x - 2}{x^2}$$
.

SCORE: ____/ 39 POINTS

[a] Find the domain of f.

[b] Find the intercepts of f.

$$y-INT: NONE-f(0) DNE
 $x-INT: x^2-x-2=0$
 $(x-2)(x+1)=0$
 $x=2,-1$$$

[c] Find the discontinuities of f, and find both one-sided limits at each discontinuity. State the type of each discontinuity.

[d] Find all horizontal asymptotes of f. Use proper calculus notation.

$$\frac{x^{2}-x-2}{x^{2}} = \lim_{x \to \infty} (1-\frac{1}{x}-\frac{2}{x^{2}}) = 1-0-0=1$$

$$\lim_{x \to \infty} \frac{x^{2}-x-2}{x^{2}} = \lim_{x \to \infty} (1-\frac{1}{x}-\frac{2}{x^{2}}) = 1-0-0=1$$

$$\text{HORIZONTAL ASYMPTOTE @ } y=1$$

$$\lim_{x \to \infty} \frac{x^{2}-x-2}{x^{2}} = \lim_{x \to \infty} \frac{2x-1}{2x} = \lim_{x \to \infty} \frac{2}{2} = 1$$

$$\lim_{x \to \infty} \frac{x^{2}-x-2}{x^{2}} = \lim_{x \to \infty} \frac{2x-1}{2x} = \lim_{x \to \infty} \frac{2}{2} = 1$$

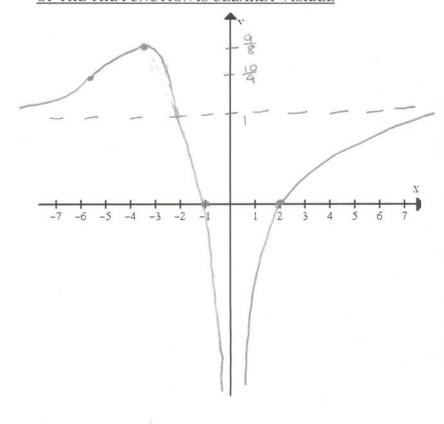
THIS QUESTION CONTINUES ON THE NEXT PAGE →

Fill in the boxes at the bottom to check that you have completed all steps. Write "N/A" if not applicable.

[e]

LABEL THE y-AXIS SO THAT THE CONCAVITY OF THE THE FUNCTION IS CLEARLY VISIBLE

Intervals where f is increasing	(-00,-4) (0,00)
Intervals where f is decreasing	(-4,0)
Intervals where f is concave up	(-00,-6)(0,00)
Intervals where f is concave down	(-6,0)
Local maxima	-4
Local minima	NONE
Inflection points	-6
Horizontal tangent lines	X = -4
Vertical tangent lines	NONE



A 10 foot ladder is leaning against a wall. If the top of the ladder is sliding down the wall at 2 feet per second, SCORE: ____/ 22 POINTS how quickly is the area under the ladder changing when the base of the ladder is 8 feet from the wall?

$$\frac{dx}{dt} = -2ft/s$$

$$want \frac{dA}{dt} when x = 6ft$$

$$A = \frac{1}{2} \times \sqrt{100 - x^{2}}$$

$$dA = \left[\frac{1}{2} \left(\sqrt{100 - x^{2}} + x \cdot \frac{1}{2} \right) \frac{1}{\sqrt{100 - x^{2}}} \cdot -2x\right] \frac{dx}{dt}$$

$$dA = \left[\frac{1}{2} \left(8 + \frac{3}{6} + \frac{1}{2} \cdot \frac{1}{2} + \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{$$

$$\frac{dx}{dt} = -2ft/s$$

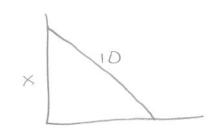
$$A = \frac{1}{2} \times y$$

 $\frac{1}{4} = \frac{1}{2} (\frac{1}{4} + \frac{1}{2} + \frac{1}{2})$
 $= \frac{1}{2} ((-2\frac{1}{2} \times 8ft))$
 $+ (6ft)(\frac{3}{2} + \frac{1}{2})$
 $= -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

$$2x + y^{2} = 100$$

$$2x + 2y + 2y + 2(8 + 1)$$

You want to lean a 10 foot ladder against a wall, so that the bottom of the ladder is at least 2 feet from the SCORE: _____ / 22 POINTS wall, and the top of the ladder is at least 6 feet from the ground. How should you lean the ladder so that the area under the ladder is as small as possible? You must use a calculus based argument.



CAN CHANGE X

$$A' = \frac{1}{2} \left(100 - x^2 - \frac{x^2}{\sqrt{100 - x^2}} \right)$$

$$= \frac{1}{\sqrt{100-x^2-x^2}}$$

=
$$\frac{50-x^2}{\sqrt{100-x^2}}$$
 IS UNDEFINED @ $x=\pm 10$ \neq DOMAIN

GLOBAL

THE BASE OF THE LADDER

SHOULD BE 2FT FROM THE WALL.

1-29 Jan-

IF
$$f$$
 is continuous on $[a,b]$
AND DIFFERENTIABLE ON (a,b)
AND $f(a) = f(b)$
THEN FOR SOME $C \in (a,b)$, $f'(c) = 0$

Estimate $\sqrt{0.9}$ using a linear approximation to $f(x) = \sqrt{1-x}$ at x = 0.

SCORE: ____/ 15 POINTS

YOU MUST USE A LINEAR APPROXIMATION TO THE FUNCTION f(x) LISTED ABOVE.

$$f'(x) = \frac{1}{2\sqrt{1-x^{7}}} \cdot -1$$

$$f'(0) = -\frac{1}{2} \qquad f(0) = 1$$

$$L(x) = 1 - \frac{1}{2}(x - 0) = (-\frac{1}{2}x)$$

$$\sqrt{0.9} = \sqrt{1-0.1} = f(0.1) \approx L(0.1) = 1 - \frac{1}{2}(0.1)$$

$$= \frac{19}{20}$$

Suppose f is a polynomial function such that $f''(x) = -56(x+8)^5(x+2)$.

SCORE: ____/ 10 POINTS

If the critical numbers of f are -1 and -8, determine what the <u>Second Derivative Test</u> tells you about each critical number.

$$f''(-1) = -56(7)^5(3) < 0$$
 LOCAL MAX
 $f''(-8) = -56(0)^5(10) = 0$ NO CONCLUSION