SCORE: ___ / 30 POINTS

NO CALCULATORS ALLOWED SHOW PROPER WORK / USE PROPER NOTATION / SIMPLIFY YOUR ANSWERS

The height of a wine barrel depends on the area of its base. If h = f(a), where h is the height (in inches),

SCORE: /3 POINTS

and a is the area of the base (in square inches), what does the statement f'(150) = -0.2 mean?

Give the units of measurement for each number in your answer.

NOTE: Your answer should NOT include "derivative", "instantaneous", "rate of change", "with respect to", "slope" or "tangent line".

IF THE BASE AREA OF A WINE BARREL IS 150 INCHES?,
THE HEIGHT DECREASES BY 0.2 INCHES
FUR EACH INCH INCREASE IN THE AREA OF THE BASE

Prove that if $f(x) = \cos x$, then $f'(x) = -\sin x$ using the definition of the derivative. You may use the two limits proved in class without proving them again. SCORE: /3 POINTS

SEE VERSION A KEY

If
$$f(x) = \frac{3x^3 + 5x^2 + 3}{\sqrt{x}}$$
, find $f''(x)$.

$$f(x) = 3x^{\frac{5}{2}} + 5x^{\frac{3}{2}} + 3x^{-\frac{1}{2}}$$

$$f'(x) = \frac{15}{2}x^{\frac{3}{2}} + \frac{15}{2}x^{\frac{1}{2}} - \frac{3}{2}x^{-\frac{3}{2}}$$

$$f''(x) = \frac{45}{4}x^{\frac{1}{2}} + \frac{15}{4}x^{-\frac{1}{2}} + \frac{9}{4}x^{-\frac{5}{2}}$$

SCORE: /3 POINTS

If $f(x) = \cos x$, find $f^{(29)}(x)$. NOTE: You do not need to show all 28 derivatives before

SCORE: ___/3 POINTS

the 29th derivative, but you should show how you got your answer.

$$f'(x) = -\sin x = f^{(5)}(x)$$
 = $f^{(12)}(x)$
 $f''(x) = -\cos x = f^{(6)}(x)$
 $f'''(x) = \sin x = f^{(7)}(x)$
 $f^{(14)}(x) = \cos x = f^{(8)}(x) = \cdots = f^{(18)}(x)$

$$Let y = \frac{2x-1}{x^2 + x}.$$

SCORE: __/6 POINTS

[a] Find
$$\frac{dy}{dx}\Big|_{x=3}$$
.

$$\frac{dy}{dx} = \frac{2(x^2+x) - (2x-1)(2x+1)}{(x^2+x)^2}$$

$$\frac{dy}{dx}\Big|_{x=3} = \frac{2(12) - (5)(7)}{12^2} = \frac{-11}{144}$$

[b] Find the equation of the normal line at
$$x = 3$$
.

$$m = \frac{144}{11}$$

$$y - \frac{5}{12} = \frac{144}{11}(x-3)$$

The table below shows values of f(x) and f'(x) for several values of x.

SCORE: __/4 POINTS

If $g(x) = x^2 f(x)$, find g'(3).

x	-3	-2	-1	0	1	2	3
f(x)	2	-1	-3	-2	3	1	-3
f'(x)	-1	3	0	-2	-3	-1	-2

$$g'(x) = 2xf(x) + x^2f'(x)$$

 $g'(3) = 2(3)f(3) + (3)^2f'(3)$
 $= (6)(-3) + (9)(-2)$
 $= -36$

If
$$f(x) = \frac{\cot x}{1 + \sec x}$$
, find $f'(x)$.

$$f'(x) = \frac{-\csc^2 x (1 + \sec x) - \cot x (\sec x \tan x)}{(1 + \sec x)^2}$$

$$= \frac{-\csc^2 x - \csc^2 x \sec - \sec x}{(1 + \sec x)^2}$$

If
$$f(x) = \sqrt[3]{x} \csc x$$
, find $f'(x)$.

SCORE: ___/ 4 POINTS