
HINTS:

So, you’re only looking at these hints because you tried really hard to solve the problems and got stuck. Right ?

[5] If you set 
n

x


 , you will need to factor the argument of the sine to get xia   to appear. You can avoid that by setting x  to a

different value, but you have to make a slightly different change to compensate as well.

[7] Use the properties of definite integrals, geometry, and the relationship between definite integrals and areas.

[8] Consider the bounds on xsin  on the interval 





2
,

6


.

[11] Fundamental Theorem of Calculus Part 1, of course. But don’t forget the chain and product rules. And substitute 1x  as soon as

you get an expression for )(xg   (no need to simplify )(xg   first).

[12] Differentiate both sides of the equation with respect to x .

[14] Watch out for the change of sign in the velocity in part [b]. Use algebraic sign analysis on )(tv , like the algebraic sign analysis you

did in Math 1A on )(xf   or )(xf   when you wanted to know where )(xf  was increasing/decreasing or concave up/down. 

[15] Use u-substitution. And remember that the name of the variable in the integral is irrelevant in a definite integral.
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