Math 1B (9:30am - 10:20am) Quiz 3 Version C Fri Apr 23, 2010

SCORE: ___/ 30 POINTS

What month is your birthday?		
What are the first 2 digits of your address?		
What are the last 2 digits of your zip code?		
What are the last 2 digits of your social security number?		
IF YOU DO NOT HAVE A SOCIAL SECURITY NUM	BER,	
USE YOUR STUDENT ID NUMBER		

NO CALCULATORS ALLOWED YOU MUST SHOW PROPER CALCULUS LEVEL WORK

State the definition of "definite integral". [Same question and answer as quiz #2]

SCORE: ___ / 2 POINTS

SEE 7:30 VERSION A KEY

State the Net Change Theorem.

SCORE: ___ / 2 POINTS

SEE 7:30 VERSION BKEY

If c(l) is the number of calories you were burning per mile during a marathon after you had run l miles of it, SCORE: ___ / 2 POINTS what is the practical meaning of $\int c(l) dl = 500$? Give the units for each number in your answer.

Your answer should make sense to a 10 year old who has never heard of calculus before

YOU BURNED 500 CALORIES & BETWEEN THE 2 MILE POINT ON AMARATHON AND THE 6 MILE POINT

The graph of f is shown below. Let $g(x) = \int_{-\infty}^{\infty} f(t) dt$.

SCORE: / 6 POINTS

On what intervals is g concave up? Explain briefly.

[b] At what value(s) of x does g have a local minimum (minima)? Explain briefly.

g'= f CHANGES FROM NEGATIVE
TO POSITIVE

The velocity of an object at time t seconds is $v(t) = 6 - 3\sqrt{t}$ feet per second. Find the distance travelled by the SCORE: ___ / 6 POINTS object over the interval [1, 9].

SEE 7:30 VERSION A KEY

Suppose
$$f'$$
 is continuous. If $f(-1) = 17$ and $\int_{1}^{2} f'(t) dt = 23$, find $f(2)$.

SCORE: __/2 POINTS

$$\int_{-1}^{2} f'(t) dt = \int_{1}^{2} f'(t) dt = 23$$
, find $f(2)$.

SCORE: __/2 POINTS

Prind the derivative of the function $g(x) = \int_{1}^{1} \ln(1+t^{2}) dt$.

SCORE: __/5 POINTS

$$\int_{1}^{2} f'(t) dt = \int_{1}^{2} f'(t) d$$