SCORE: _____/ 140 POINTS

- ALL PROBLEMS MUST BE SOLVED ALGEBRAICALLY TO EARN CREDIT (NO GUESS & CHECK)
- PUT A BOX AROUND EACH FINAL ANSWER
- SHOW COMPLETE AND PROPER WORK TO EARN FULL CREDIT

Find the equation of the horizontal asymptote of $y = \frac{5+13x}{17x-12}$

SCORE: ___ / 8 POINTS

$$y \approx \frac{13x}{17x}$$
 for large values of x

$$y = \frac{17x}{17}$$

Find the equation of the vertical asymptote of $y = \frac{5+13x}{17x-12}$.

$$\begin{vmatrix}
17x - 12 = 0 \\
x = \frac{12}{17}
\end{vmatrix}$$

Simplify:

SPECIFY ANY RESTRICTIONS.

SCORE: ___ / 15 POINTS

$$=\frac{(3x-1)(x+2)}{(6x-7)(x+2)}$$

$$\frac{3x-1}{6x-7}$$

A number divided by two is equal to twelve divided by five less than that number. Solve:

SCORE: ___ / 15 POINTS

 $\frac{x}{2} = \frac{12}{x - 5}$

CHECK:

$$x = 8$$

Find the number. CHECK YOUR ANSWER(S).

$$x = 8$$
 $x = -3$

$$x^2 - 5x = 24$$

$$\frac{8}{2} = 4$$

$$\frac{-3}{2} = -\frac{3}{2}$$

$$x^2 - 5x - 24 = 0$$

$$\frac{12}{12} = 4$$

$$\frac{8}{2} = 4 \qquad \frac{-3}{2} = -\frac{3}{2}$$

$$\frac{12}{3} = 4 \qquad \frac{12}{-8} = -\frac{3}{2}$$

$$(x-8)(x+3) = 0$$

$$x = 8 \text{ or } x = -3$$

$$\frac{7x^2 - 7x - 4}{x^2 - x - 2} - \frac{5x^2 - 6x + 2}{x^2 - x - 2}$$

$$= \frac{2x^2 - x - 6}{x^2 - x - 2}$$

$$= \frac{(x - 2)(2x + 3)}{(x - 2)(x + 1)}$$

$$= \frac{2x + 3}{x + 1}$$

Solve for x in the following similar triangles:

SCORE: ____ / 12 **POINTS**

$$\frac{12}{x-2} = \frac{x}{4}$$

$$48 = x^2 - 2x$$

$$0 = x^2 - 2x - 48$$

$$0 = (x+6)(x-8)$$

$$x = -6 \text{ or } x = 8$$

 $\frac{50x^2 - 8}{36x^2 - 27x^3} \div \frac{20x + 8}{9x^2 - 12x}$ Divide and simplify:

SCORE: ___ / 15 POINTS

$$= \frac{2(25x^2 - 4)}{-9x^2(3x - 4)} \div \frac{4(5x + 2)}{3x(3x - 4)}$$

$$= \frac{2(5x + 2)(5x - 2)}{-9x^2(3x - 4)} \times \frac{3x(3x - 4)}{4(5x + 2)}$$

$$= \frac{5x - 2}{-3x} \times \frac{1}{2}$$

$$= \frac{5x - 2}{-6x}$$

$$= \left[-\frac{5x - 2}{6x} \text{ or } \frac{2 - 5x}{6x} \right]$$

$$\frac{1 - \frac{2}{x - 4}}{\frac{2}{x - 4} - \frac{9}{x + 3}}$$

$$= \frac{1 - \frac{2}{x - 4}}{\frac{2}{x - 4} - \frac{9}{x + 3}} \frac{(x - 4)(x + 3)}{(x - 4)(x + 3)}$$

$$= \frac{(x - 4)(x + 3) - 2(x + 3)}{2(x + 3) - 9(x - 4)}$$

$$= \frac{x^2 - x - 12 - 2x - 6}{2x + 6 - 9x + 36}$$

$$= \frac{x^2 - 3x - 18}{-7x + 42}$$

$$= \frac{(x - 6)(x + 3)}{-7(x - 6)}$$

$$= \frac{x + 3}{-7}$$

$$= \left[-\frac{x + 3}{7} \right]$$

Solve for *x*:

$$\frac{2}{x^2 - 4x + 3} - \frac{1}{x^2 - 1} = \frac{1}{x - 3}$$
 CHECK YOUR ANSWER(S)

SCORE: / 15 POINTS

$$(x-1)(x-3)(x+1)\left[\frac{2}{(x-1)(x-3)} - \frac{1}{(x-1)(x+1)}\right] = \frac{1}{x-3}(x-1)(x-3)(x+1)$$

$$2(x+1) - (x-3) = (x-1)(x+1)$$

$$2x + 2 - x + 3 = x^2 - 1$$

$$x + 5 = x^2 - 1$$

$$0 = x^2 - x - 6$$

$$0 = x - x - 0$$

 $0 = (x+2)(x-3)$

$$0 = (x+2)(x-3)$$

$$x = -2$$
 or $x = 3$

CHECK:

$$x = -2$$

$$\frac{2}{15} - \frac{1}{3} = \frac{2}{15} - \frac{5}{15} = -\frac{3}{15} = -\frac{1}{5}$$

$$\frac{2}{15} = -\frac{1}{15} = -\frac{1}{15}$$

$$x = 3$$

$$\frac{2}{15} = -\frac{1}{15} = -\frac{1}{1$$

$$\frac{x+3}{x^2-1} - \frac{x+5}{x^2-2x-3}$$

SCORE: ____ / 15 **POINTS**

$$= \frac{x+3}{(x-1)(x+1)} - \frac{x+5}{(x-3)(x+1)}$$

$$= \frac{x+3}{(x-1)(x+1)} \cdot \frac{x-3}{x-3} - \frac{x+5}{(x-3)(x+1)} \cdot \frac{x-1}{x-1}$$

$$= \frac{x^2 - 9 - (x^2 + 4x - 5)}{(x-1)(x+1)(x-3)}$$

$$= \frac{-4x - 4}{(x-1)(x+1)(x-3)}$$

$$= \frac{-4(x+1)}{(x-1)(x+1)(x-3)}$$

$$= \frac{-4}{(x-1)(x-3)}$$

Solve:

The cost of paper needed to wrap a cylinder varies directly as the weight of the cylinder and score: ____ / 15 POINTS inversely as the radius. A cylinder weighing 21 ounces with a radius of 4 inches requires 35 cents of paper to wrap. Find the cost of paper needed to wrap a cylinder with a radius of 2 inches that weighs 12 ounces.

FOR FULL CREDIT, YOU MUST IDENTIFY WHAT ALL YOUR VARIABLES REPRESENT, FIND THE SPECIFIC EQUATION CONNECTING THEM, AND SUMMARIZE YOUR FINAL ANSWER IN A SENTENCE USING THE CORRECT UNITS OF MEASUREMENT.

 $C = \cos t \text{ of paper (cents)}$

w = weight of cylinder (ounces)

r = radius (inches)

$$C = \frac{kw}{r}$$

$$C = \frac{20w}{3r}$$

$$35 = \frac{k(21)}{4}$$

$$C = \frac{20(12)}{3(2)}$$

$$140 = 21k$$

$$C = 40$$

$$\frac{20}{3} = k$$

It costs 40 cents to wrap the cylinder.