YOU MUST SHOW LOGICAL, NEAT AND ORGANIZED WORK TO EARN FULL CREDIT (NO GUESS & CHECK) IT MUST BE CLEAR HOW YOU ARRIVED AT YOUR ANSWER

- ➡ PUT A BOX AROUND YOUR FINAL ANSWER
 - ALL FINAL ANSWERS WHICH ARE RADICALS MUST BE SIMPLIFIED
- ➡ ALL FRACTIONS MUST BE IN SIMPLEST FORM

Find the distance between the points (-6, -3) and (1, -4). Write your final answer using radicals. SCORE: ____/ 6 POINTS

$$\sqrt{(1-(-6))^2+(-4-(-3))^2} = \sqrt{7^2+(-1)^2} = \sqrt{49+1} = \sqrt{50} = 5\sqrt{2}$$

Divide. Rationalize the denominator and simplify.

$$\frac{\sqrt{56}}{\sqrt{21y}} = \frac{\sqrt{7}\sqrt{8}}{\sqrt{7}\sqrt{3y}} = \frac{\sqrt{8}}{\sqrt{3y}} = \frac{2\sqrt{2}}{\sqrt{3y}} = \frac{2\sqrt{2}}{\sqrt{3y}}\frac{\sqrt{3y}}{\sqrt{3y}} = \frac{2\sqrt{6y}}{3y}$$

Translate the following sentence into an absolute value equation or inequality.

"x is no more than 8 away from 4"

The distance between x and 4 is less than or equal to 8 $|x-4| \le 8$

If $f(x) = 2x^2 - 5x - 6$, find f(a-4).

$$2(a-4)^{2} - 5(a-4) - 6$$

= 2(a² - 8a + 16) - 5a + 20 - 6
= 2a² - 16a + 32 - 5a + 20 - 6
= 2a² - 21a + 46

SCORE: ____ / 6 POINTS

SCORE: ____/ 8 POINTS

SCORE: ____ / 6 POINTS

The equation 7 - |11 - 3x| = 2 has two solutions. One solution is x = 2. Find the other solution. <u>Check your answer.</u>

$$-|11-3x| = -5$$

$$|11-3x| = 5$$

$$11-3x = 5$$

$$-3x = -6$$

$$x = 2$$

$$x = 2$$

$$CHECK:$$

$$7 - |11-3\left(\frac{16}{3}\right)| = 7 - |11-16| = 7 - |-5| = 7 - 5 = 2$$

$$7 - |11-3\left(\frac{16}{3}\right)| = 7 - |11-16| = 7 - |-5| = 7 - 5 = 2$$

Solve the equation $11 - 3\sqrt{2 - h} = 5$ using algebra. <u>Check your answer(s)</u>.

 $-3\sqrt{2-h} = -6$ $\sqrt{2-h} = 2$ 2-h = 4 -h = 2 h = -2CHECK: $11 - 3\sqrt{2-(-2)} = 11 - 3\sqrt{4} = 11 - 3(2) = 11 - 6 = 5$

Solve the equation $m + \sqrt{16 - 5m} = 2$ using algebra. <u>Check your answer(s)</u>.

SCORE: ____ / 12 POINTS

$$\sqrt{16-5m} = 2-m$$
 CHECK:

$$16-5m = (2-m)^2$$
 $m = 3$

$$16-5m = 4-4m+m^2$$
 $3+\sqrt{16-5(3)} = 3+\sqrt{16-15} = 3+\sqrt{1} = 3+1 = 4$

$$0 = m^2 + m - 12$$
 $m = -4$

$$0 = (m-3)(m+4)$$
 $-4+\sqrt{16-5(-4)} = -4+\sqrt{16+20} = -4+\sqrt{36} = -4+6 = 2$

$$m = 3 \text{ OR } m = -4$$

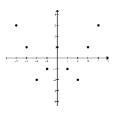
SCORE: ____/ 10 POINTS

Solve
$$|7-4x| \ge 5$$
.

SCORE: / 10 POINTS

The distance between 7 and 4x is greater than or equal to 5 $4x \le 2$ OR $4x \ge 12$

$$x \le \frac{1}{2}$$
 OR $x \ge 3$


Write using fractional and/or negative exponents (where applicable).

[a]
$$(\sqrt[6]{n})^{24} = n^4$$
 [b] $\sqrt[5]{b^{13}} = b^{\frac{13}{5}}$ [c] $\frac{1}{\sqrt{n^9}} =$

Find the equation of the circle with center (-4, 16) and radius 9.

 $(x-(-4))^{2} + (y-16)^{2} = 9^{2}$ $(x+4)^2 + (y-16)^2 = 81$

Circle the two graphs below that represent functions.

Simplify $\sqrt{60r^{16}a^{13}v^9}$. Write your final answer using radicals.

 $2r^8a^6v^4\sqrt{15av}$

Simplify $\sqrt{588}$.

$$588 = 2 \times 2 \times 3 \times 7 \times 7$$
$$\sqrt{588} = 2 \times 7\sqrt{3} = 14\sqrt{3}$$

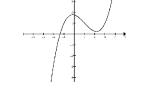
SCORE: ____ / 8 POINTS

$$\frac{1}{\sqrt{p^9}} = p^{-\frac{9}{2}}$$

 $7 - 4x \le -5$ OR $7 - 4x \ge 5$

 $-4x \le -12$ OR $-4x \ge -2$

 $x \le \frac{1}{2}$ OR $x \ge 3$


OR

SCORE: ____/ 6 POINTS

SCORE: ____ / 6 POINTS

SCORE: ____ / 6 POINTS

SCORE: ____ / 6 POINTS

Find the center and radius of the circle $x^2 + y^2 - 14x + 12y + 4 = 0$.

 $x^{2} - 14x + y^{2} + 12y = -4$ $x^{2} - 14x + 49 + y^{2} + 12y + 36 = -4 + 49 + 36$ $(x - 7)^{2} + (y + 6)^{2} = 81$ CENTER = (7, -6) RADIUS = 9

Perform the indicated operations and simplify. Write your final answers using radicals.

SCORE: ____ / 12 POINTS

[a]
$$\sqrt{10g^5} \sqrt{15g^{11}}$$

 $= \sqrt{150g^{16}}$
 $= 5g^8 \sqrt{6}$
[b] $(4\sqrt{5} + \sqrt{3})(\sqrt{6} - 2\sqrt{10})$
 $= 4\sqrt{30} - 8\sqrt{50} + \sqrt{18} - 2\sqrt{30}$
 $= 4\sqrt{30} - 8(5\sqrt{2}) + 3\sqrt{2} - 2\sqrt{30}$
 $= 2\sqrt{30} - 40\sqrt{2} + 3\sqrt{2}$
 $= 2\sqrt{30} - 37\sqrt{2}$

Perform the indicated operations and simplify. Write your final answers using fractional exponents.				SCORE:/ 8 POINTS
[a]	$\frac{\sqrt[6]{w}}{\sqrt[15]{w}}$	[b]	$k^{8}k^{\frac{5}{6}}$	
	$=rac{w^{rac{1}{6}}}{w^{rac{1}{15}}}$		$=k^{8+\frac{5}{6}}$	
	$=w^{\frac{1}{6}-\frac{1}{15}} =w^{\frac{1}{10}}$		$=k^{\frac{53}{6}}$	

Rationalize the denominator and simplify.

$$\begin{bmatrix} a \end{bmatrix} \quad \frac{10}{7\sqrt{15}} \\ = \frac{10}{7\sqrt{15}} \frac{\sqrt{15}}{\sqrt{15}} \\ = \frac{10\sqrt{15}}{7(15)} \\ = \frac{2\sqrt{15}}{7(3)} \\ = \frac{2\sqrt{15}}{21} \\ \end{bmatrix} \begin{bmatrix} b \end{bmatrix} \quad \frac{33}{6+\sqrt{14}} \\ = \frac{33}{6+\sqrt{14}} \frac{6-\sqrt{14}}{6-\sqrt{14}} \\ = \frac{33(6-\sqrt{14})}{36-14} \\ = \frac{33(6-\sqrt{14})}{22} \\ = \frac{3(6-\sqrt{14})}{2} \\ \end{bmatrix}$$

SCORE: ____ / 8 POINTS