How to rewrite the general formula for a sequence using index shifting

Suppose you have the sequence

 $2^2, 3^2, 4^2, 5^2, 6^2, \ldots$

If the first term (2²) is called a_2 , then the formula is simply $a_n = n^2$.

Suppose you want to call the first term a_1 instead. You can find the general formula using this new numbering by performing a simple substitution on the original formula.

To simplify the reasoning,

we will call the sequence a and the index n, when using the original index, and we will call the sequence b and the index k, when using the new index.

In other words,

a_2	=	b_1	=	2 ²
a_3	=	b_2	=	3 ²
a_4	=	b ₃	=	4 ²
\mathbf{a}_5	=	b_4	=	5 ²
a_6	=	\mathbf{b}_5	=	6 ²
	$egin{array}{c} a_2\ a_3\ a_4\ a_5\ a_6 \end{array}$	$egin{array}{rcl} a_2 & = & & & & & & & & & & & & & & & & & $	$egin{array}{rcl} a_2 &=& b_1\ a_3 &=& b_2\ a_4 &=& b_3\ a_5 &=& b_4\ a_6 &=& b_5 \end{array}$	$a_2 = b_1 = a_3 = b_2 = a_4 = b_3 = a_5 = b_4 = a_6 = b_5 = a_5$

Notice that $a_n = b_k$ when n = k + 1. Substituting n = k + 1 into $a_n = b_k$ gives $a_{k+1} = b_k$, or in other words, $b_k = a_{k+1} = (k + 1)^2$ [by substituting n = k + 1 into $a_n = n^2$]. Since the name of the index is irrelevant, $b_n = (n + 1)^2$. And since the name of the sequence is irrelevant, $a_n = (n + 1)^2$ when the index starts at n = 1.

Similarly, if you want to call the first term a_6 instead. Temporarily rename the terms b_k instead of a_n . So, the first term, which used to be called a_2 is now called b_6 , which means n = k - 4. So, $b_k = a_n = a_{k-4} = (k - 4)^2$ So, $a_n = (n - 4)^2$ using the new index where the first term is called a_6 .

Similar logic can be used to rewrite a summation.

For example, suppose you wanted to rewrite $\sum_{n=2}^{6} n^2$ as $\sum_{n=1}^{?}$?.

First change the name of the index of summation in the new sum to get $\sum_{k=1}^{r}$?. Now, notice that n = 2 when k = 1, or in other words n = k + 1, or k = n - 1.

So the upper limit of summation n = 6 is equivalent to k = 6 - 1 = 5. The formula n^2 is equivalent to $(k + 1)^2$.

So, the summation can be written as $\sum_{k=1}^{3} (k+1)^2$.

And since the name of index of summation is irrelevant,

the summation can be written as $\sum_{n=1}^{5} (n+1)^2$.