Section 1.1

In math, we use variables to talk about

- [1] a thing that you may not know the value of (there could be more than one value)
- OR [2] each thing within a certain group of things (without naming each thing separately).
- ex. <u>Rewrite using variables. Which of the two cases above is each situation ?</u>

"Everyone enrolled in Math 22 passed Math 43 or Math 49B."

For every person x who is enrolled in Math 22,

x passed Math 43 or Math 49B. (Case [2])

"Some real numbers are smaller than their own square roots."

For some real number $y, y < \sqrt{y}$. (Case [1])

Rewrite without using variables. (Try to make the answer sound like natural language.)

"There is a DeAnza instructor r, such that r 's wife is a chef."

There is a DeAnza instructor whose wife is a chef.

"For all positive integers t, $\frac{1}{t} \le t^2$."

The reciprocal of every positive integer

is less than or equal to that integer's square.

A **<u>universal statement</u>** says that

a certain property is true for every thing within a group.

Universal statements often use the words "all", "any" or "every",

or the phrases "for all", "for any" or "for every".

A **conditional statement** says that

if one situation is true, then another situation must also be true.

Conditional statements often use the words "if"/"then".

An existential statement says that

there is at least one thing in a group for which a certain property is true.

Existential statements often use the word "some",

or the phrases "for some", "there is" or "there exists".

ex. <u>Classify each statement.</u>

"Somebody in this class hasn't signed in yet." (EXISTENTIAL)

"All DeAnza students have a DeAnza ID number." (UNIVERSAL)

"If 97 is odd, then 97^2 is odd." (CONDITIONAL)

A universal conditional statement says that

for every thing within a group, if one property is true,

then another property must also be true.

In other words, a universal conditional statement is a statement that is

both universal and conditional.

eg. "For all American citizens p, if p is eligible to vote, then p is at least 18 years old."

Universal conditional statements can be written to appear as either strictly universal or strictly conditional.

eg.	Universal:	"For all American citizens <i>w</i> who are eligible to vote,	NEW GROUP =	
		w is at least 18 years old."	THINGS IN ORIGINAL GROUP	
	OR	"All American citizens who are eligible to vote	FOR WHICH	
		are at least 18 years old."	THE "IF" PROPERTY IS TRUE	
	Conditional:	"If an American citizen w is eligible to vote,	NEW "IF" PROPERTY =	
		then w is at least 18 years old."	ORIGINAL "IF" PROPERTY	
	OR	"If an American citizen is eligible to vote,	ALONG WITH PROPERTY OF	
		he is at least 18 years old."	BEING IN ORIGINAL GROUP	

Universal conditional statements can also be written to appear neither explicitly universal nor explicitly conditional.

eg. "American citizens must be 18 years old to be eligible to vote."

SIDE NOTE: It is possible to write every universal statement as a conditional statement using the method above.

ex. <u>Rewrite using the given structures.</u>

"For all real numbers m, if m < 0, then \sqrt{m} is an imaginary number."

USING A VARIABLE:

[a]	If <i>m</i>	is a negative real number	, then	√m is an imaginary number.
[b]	For all	negative real numbers	m,	√m is an imaginary number.

WITHOUT USING A VARIABLE:

- [c] All negative real numbers have imaginary square roots.
- [d] The square root of **any negative real number is imaginary.**
- [e] If a real number is negative , then its square root is imaginary.

ex. <u>Rewrite using the formal universal conditional structure.</u>

"The sine of every acute angle is positive."

For all	angles <i>a</i>	, if	<i>a</i> is acute	, then	sin <i>a</i> > 0.
---------	-----------------	------	-------------------	--------	-------------------

A universal existential statement says that

for every thing in a group,

there exists at least one other thing in some group

for which a certain property is true.

(NOTE: the second thing may or may not be different from the first thing,

and the second thing may or may not be from the same group as the first thing)

eg. "For every positive number x, there is an acute angle y such that $y = \tan^{-1} x$."

Universal existential statements can be written in a less formal structure, which may make the existential portion less explicit by eliminating the second variable or even both variables.

eg. "For all positive numbers *x*, *x* has an acute inverse tangent."

"Every positive number has an acute inverse tangent."

"All positive numbers have acute inverse tangents."

"The inverse tangent of a positive number is always acute."

ex. <u>Rewrite using the given structures.</u>

"For all negative numbers j, there is a positive number k, such that $k = j^2$."

USING ONE VARIABLE:

ex.

[a]	For all	negative numb	ers	j, j has	a positive square.	
[b]	For every	negative nur	nber j	, there is	a positive squar	e for <i>j</i> .
WITHOUT USING A VARIABLE:						
[c] All negative numbers have positive squares.						
[d]	d] The square of every negative number is positive.					
[e] For every negative number , there is a positive square .						
Rewrite using the formal universal existential structure.						
"Everybody loves somebody."						
For ev	very perso	on <i>h</i> , th	nere is	a person k	, such that	h loves k.

An existential universal statement says that

there exists at least one thing in a group

for which a certain property is true for every thing in some group.

(NOTE: the second group may or may not be the same as the first group)

eg. "There is a positive number *e* such that, for all real numbers $r, e \times r = r$."

Existential universal statements can be written in a less formal structure, by eliminating the second variable or even both variables. It is, however, hard to make the existential or universal portions less explicit.

eg. "There is a positive number *e* whose product with any real number is that real number."

"There is a positive number whose product with every real number is the real number."

"Some positive number, when multiplied by any real number, gives that real number."

ex. <u>Rewrite using the given structures.</u>

"There is a class g such that, for every Math 22 student b, b has passed g."

USING ONE VARIABLE:

[a] There is a class g such that every Math 22 student has passed g.

WITHOUT USING A VARIABLE:

- [b] There is a class that every Math 22 student has passed.
- [c] Some class has been passed by every Math 22 student.

ex. <u>Rewrite using the formal existential universal structure.</u>

"Some monument has been seen by every American tourist visiting Paris."

There is **a monument** *s* such that, for all **American tourists** *f* **visiting Paris**, *f* **has seen** *s*.