Math 22 (9:30am – 10:20am) Midterm 2 Version E Thu Nov 10, 2011

SCORE: / 150 POINTS

Simplify the expression $\binom{n+2}{n} - \binom{n}{2}$.

$$\frac{(n+2)!}{n!2!} - \frac{n!}{2!(n-2)!}$$

$$= \frac{(n+2) \times (n+1) \times n!}{n!2!} - \frac{n \times (n-1) \times (n-2)!}{2!(n-2)!}$$

$$= \frac{(n+2)(n+1)}{2} - \frac{n(n-1)}{2}$$

$$= \frac{n^2 + 3n + 2}{2} - \frac{n^2 - n}{2}$$

$$= \frac{4n+2}{2}$$

$$= 2n+1$$

From your textbook, remember that the Fibonacci sequence is defined by

$$\begin{split} F_0 &= F_1 = 1 \\ F_k &= F_{k-1} + F_{k-2} \text{ for all integers } k \text{ where } k \geq 2 \end{split}$$

Show that the terms of the Fibonacci sequence satisfy the recurrence relation $F_k = \frac{F_{k+1} + F_{k-2}}{2}$ for all integers k where $k \ge 2$.

"Show" means you do NOT have to write a formal proof, but you must demonstrate the supporting algebra.

$$\frac{F_{k+1} + F_{k-2}}{2}$$

$$= \frac{(F_k + F_{k-1}) + F_{k-2}}{2}$$

$$= \frac{F_k + (F_{k-1} + F_{k-2})}{2}$$

$$= \frac{F_k + F_k}{2}$$

$$= F_k$$

SCORE: / 15 POINTS

SCORE: / 15 POINTS

$$(n^3 + 2n + 7) \mod 3 = 1$$
 for all integers $n \ge 2$

in two ways:

[a] PROOF WITHOUT USING INDUCTION: Let *n* be a particular but arbitrary integer such that $n \ge 2$. By the Quotient Remainder Theorem, n = 3q or n = 3q + 1 or n = 3q + 2 for some $q \in Z$.

CASE 1: n = 3q $n^{3} + 2n + 7 = (3q)^{3} + 2(3q) + 7 = 27q^{3} + 6q + 7 = 3(9q^{3} + 2q + 2) + 1$ where $9q^{3} + 2q + 2 \in Z$ by closure of Z under multiplication and addition. By the definition of mod, $(n^{3} + 2n + 7) \mod 3 = 1$.

CASE 2: n = 3q + 1 $n^3 + 2n + 7 = (3q + 1)^3 + 2(3q + 1) + 7 = 27q^3 + 27q^2 + 15q + 10 = 3(9q^3 + 9q^2 + 5q + 3) + 1$ where $9q^3 + 9q^2 + 5q + 3 \in \mathbb{Z}$ by closure of \mathbb{Z} under multiplication and addition. By the definition of mod, $(n^3 + 2n + 7) \mod 3 = 1$.

CASE 3 n = 3q + 2 $n^3 + 2n + 7 = (3q + 2)^3 + 2(3q + 2) + 7 = 27q^3 + 54q^2 + 24q + 19 = 3(9q^3 + 18q^2 + 8q + 6) + 1$ where $9q^3 + 18q^2 + 8q + 6 \in Z$ by closure of Z under multiplication and addition. By the definition of mod, $(n^3 + 2n + 7) \mod 3 = 1$.

So, $(n^3 + 2n + 7) \mod 3 = 1$ for all integers $n \ge 2$.

ALTERNATE SOLUTION

Let *n* be a particular but arbitrary integer such that $n \ge 2$. By the Quotient Remainder Theorem, n = 3q + r for some $q \in Z$ and where r = 0, 1 or 2. $n^3 + 2n + 7 = (3q + r)^3 + 2(3q + r) + 7 = 27q^3 + 27q^2r + 9qr^2 + r^3 + 6q + 2r + 7$ $= 3(9q^3 + 9q^2r + 3qr^2 + 2q) + r^3 + 2r + 7 = 3m + r^3 + 2r + 7$ where $m = 9q^3 + 9q^2r + 3qr^2 + 2q \in Z$ by closure of Z under multiplication and addition.

CASE 1: r = 0 $n^{3} + 2n + 7 = 3m + 7 = 3(m + 2) + 1$ where $m + 2 \in Z$ by closure of Z under addition. By the definition of mod, $(n^{3} + 2n + 7) \mod 3 = 1$. CASE 2: r = 1 $n^{3} + 2n + 7 = 3m + 10 = 3(m + 3) + 1$ where $m + 3 \in Z$ by closure of Z under addition. By the definition of mod, $(n^{3} + 2n + 7) \mod 3 = 1$. CASE 3: r = 2 $n^{3} + 2n + 7 = 3m + 19 = 3(m + 6) + 1$ where $m + 6 \in Z$ by closure of Z under addition. By the definition of mod, $(n^{3} + 2n + 7) \mod 3 = 1$.

So, $(n^3 + 2n + 7) \mod 3 = 1$ for all integers $n \ge 2$.

٤

Basis step:	$n = 2: 2^3 + 2(2) + 7 = 19 = 3(6) + 1$
	By definition of mod, $(2^3 + 2(2) + 7) \mod 3 = 1$.
Inductive step:	Assume that $(k^3 + 2k + 7) \mod 3 = 1$ for some particular but arbitrary integer $k \ge 2$.
	[NEED TO SHOW: $((k+1)^3 + 2(k+1) + 7) \mod 3 = 1$]
	By the definition of mod, $k^3 + 2k + 7 = 3m + 1$ for some $m \in \mathbb{Z}$.
	$(k+1)^3 + 2(k+1) + 7$
	$=k^{3}+3k^{2}+5k+10$
	$=k^{3}+2k+7+3k^{2}+3k+3$
	$= 3m + 1 + 3k^2 + 3k + 3$
	$= 3(m+k^2+k+1)+1$
	where $m + k^2 + k + 1 \in Z$ by closure of Z under multiplication and addition.
	So, $(n^3 + 2n + 7) \mod 3 = 1$ for all integers $n \ge 2$.

Use an element argument to prove the following statement.

SCORE: / 20 POINTS

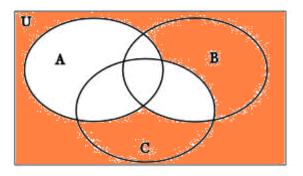
If $A \subseteq B^C$, then $A \cap B = \emptyset$

(Assume that A and B are subsets of some universal set U.)

Let *A* and *B* be particular but arbitrary sets such that $A \subseteq B^C$. Suppose that $A \cap B \neq \emptyset$. So, there exists an element $x \in A \cap B$. So, $x \in A$ and $x \in B$, by the definition of \cap . But, since $x \in A$ and $A \subseteq B^C$, therefore $x \in B^C$, be the definition of \subseteq . So, $x \notin B$ by the definition of set complement. But, $x \in B$ and $x \notin B$, a contradiction. So, $A \cap B = \emptyset$.

Shade in the region(s) in the Venn diagram corresponding to $A^{C} - (B \cap C)$.

SCORE: ____ / 10 POINTS



Consider the sequence defined by

 $a_0 = 4$ $a_1 = 8$ $a_k = (2+k)a_{k-1} - 2ka_{k-2} \text{ for all } k \in \mathbb{Z} \text{ such that } k \ge 2$

[a] Find a_2 and a_3 .

$$a_2 = (2+2)a_1 - 2(2)a_0 = 4(8) - 4(4) = 16$$

 $a_3 = (2+3)a_2 - 2(3)a_1 = 5(16) - 6(8) = 32$

[b] Based on the values of a_0 , a_1 , a_2 and a_3 , guess and prove the general formula for the sequence.

If a general formula/pattern does not seem somewhat obvious, check your arithmetic in [a].

Claim:
$$a_n = 2^{n+2}$$

Proof by strong induction:
Basis step: $a_0 = 4 = 2^{0+2}$ and $a_1 = 8 = 2^{1+2}$
Inductive step: Assume that $a_n = 2^{n+2}$ for $n = 0, 1, ..., k$ for some particular but arbitrary integer $k \ge 1$.
[NEED TO SHOW: $a_{k+1} = 2^{(k+1)+2} = 2^{k+3}$]
 $k - 1 \ge 0$ (since $k \ge 1$) and $k - 1 \le k$.
 a_{k+1}
 $= (2 + (k + 1))a_k - 2(k + 1)a_{k-1}$
 $= (3 + k)2^{k+2} - (2k + 2)2^{k+1}$
 $= 3(2^{k+2}) + k2^{k+2} - 2k(2^{k+1}) - 2(2^{k+1})$
 $= 3(2^{k+2}) + k2^{k+2} - k2^{k+2} - 2^{k+2}$
 $= 2(2^{k+2})$
 $- 2^{k+3}$

So, by strong induction, $a_n = 2^{n+2}$ for $n \in \mathbb{Z}^{nonneg}$.

OPTIONAL BONUS QUESTIONS ON OTHER SIDE