Math 22 (9:30am – 10:20am) **Quiz 1 Version P** Fri Sep 30, 2011

SCORE: / 14 POINTS

Write the **formal definition** of a function used in discrete math. Use correct English and mathematical notation. SCORE: ____/ 3 POINTS

Given sets A and B, a relation F from A to B is a function if and only if for all $x \in A$, there is some $y \in B$ such that $(x, y) \in F$ and for all $x \in A$ and all $y \in B$ and $z \in B$, if $(x, y) \in F$ and $(x, z) \in F$, then y = z

Suppose A is a set with 9 elements, B is a set with 11 elements, and C is a set with 7 elements. How many elements are in $C \times B$?

 $7 \times 11 = 77$

Let $P = \{x \in \mathbb{Z} \mid -4 \le x \le -1\}.$ Let $S = \{x \in \mathbb{Z}^{-} \mid 2 < x^2 < 20\}$

> [a] Write P in set roster notation.

> > {-4, -3, -2}

[b] Is $2 \in S$? Why or why not ?

No, 2 ∉ Z⁻

Is P a proper subset of S? Why or why not? (HINT: Write S in set roster notation.) [c]

No, S does not contain any elements that are not also in P, since $S = P = \{-4, -3, -2\}$

Circle the two statements below which are true.

SCORE: / 2 POINTS 1 point for each circled answer which is a true statement, -1 point for each circled answer which is a false statement. 0 points if more than two statements are circled. Minimum 0 points total.

 $\{2\} \in \{\{1\}, \{2\}, \{3\}\}$

 $\{e, a\} \subseteq \{a, e, i, o, u\} \times \{d, b, c, a\}$

There is a function from {a, b, c} to {d, e, f} that is not a relation from {a, b, c} to {d, e, f}

Let $J = \{6, 8\}$ and $K = \{-2, 1, 6\}$. Let T be the relation from J to K defined by xTy if and only if x – y is a multiple of 5.

> Write $J \times K$ in set roster notation. [a]

There are 2 functions from {a} to {b, c}

 $\{(6, -2), (6, 1), (6, 6), (8, -2), (8, 1), (6, 6)\}$

[b] Write T in set roster notation.

 $\{(6, 1), (6, 6), (8, -2)\}$

Is *T* a function ? Why or why not ? [c]

No, (6, 1) ∈ *T* and (6, 6) ∈ *T*, but 1 ≠ 6

SCORE: / 5 POINTS

SCORE: / 1 POINTS

SCORE: ____ / 3 POINTS

Math 22 (9:30am – 10:20am) Quiz 1 Version A Fri Sep 30, 2011

SCORE: / 14 POINTS Write the **formal definition** of a function used in discrete math. Use correct English and mathematical notation. SCORE: ____ / 3 POINTS Given sets A and B, a relation F from A to B is a function if and only if for all $x \in A$, there is some $y \in B$ such that $(x, y) \in F$ and for all $x \in A$ and all $y \in B$ and $z \in B$, if $(x, y) \in F$ and $(x, z) \in F$, then y = zSuppose A is a set with 9 elements, B is a set with 11 elements, and C is a set with 7 elements. SCORE: / 1 POINTS How many elements are in $B \times A$? $11 \times 9 = 99$ Let $P = \{x \in \mathbb{Z} \mid -5 < x \le -2\}.$ SCORE: ____ / 3 POINTS Let $S = \{x \in \mathbb{Z}^{-} \mid 2 < x^2 < 20\}$ [a] Write P in set roster notation. {-4, -3, -2} [b] Is $2 \in S$? Why or why not ? No, 2 ∉ Z⁻ Is P a proper subset of S? Why or why not? (HINT: Write S in set roster notation.) [c] No, S does not contain any elements that are not also in P, since $S = P = \{-4, -3, -2\}$ SCORE: / 2 POINTS Circle the two statements below which are true. 1 point for each circled answer which is a true statement, -1 point for each circled answer which is a false statement. 0 points if more than two statements are circled. Minimum 0 points total. $\{(\mathbf{e}, \mathbf{a})\} \subseteq \{\mathbf{a}, \mathbf{e}, \mathbf{i}, \mathbf{o}, \mathbf{u}\} \times \{\mathbf{d}, \mathbf{b}, \mathbf{c}, \mathbf{a}\}$ $\{2\} \in \{\{1\}, \{2\}, \{3\}\}$

There are 2 functions from {a, b} to {c}

There is a function from {a, b, c} to {d, e, f} that is not a relation from {a, b, c} to {d, e, f}

Let $J = \{8, 10\}$ and $K = \{-2, 0, 8\}$. Let *T* be the relation from *J* to *K* defined by *xTy* if and only if x - y is a multiple of 5.

[a] Write $J \times K$ in set roster notation.

 $\{(8, -2), (8, 0), (8, 8), (10, -2), (10, 0), (10, 8)\}$

[b] Write *T* in set roster notation.

 $\{(8, -2), (8, 8), (10, 0)\}$

[c] Is *T* a function ? Why or why not ?

No, $(8, -2) \in T$ and $(8, 8) \in T$, but $-2 \neq 8$

SCORE: ____ / 5 POINTS

Math 22 (9:30am – 10:20am) Quiz 1 Version R Fri Sep 30, 2011

SCORE: / 14 POINTS

Write the formal definition of a function used in discrete math. Use correct English and mathematical notation. SCORE: / 3 POINTS

Given sets A and B, a relation F from A to B is a function if and only if for all $x \in A$, there is some $y \in B$ such that $(x, y) \in F$ and for all $x \in A$ and all $y \in B$ and $z \in B$, if $(x, y) \in F$ and $(x, z) \in F$, then y = z

Suppose *A* is a set with 9 elements, *B* is a set with 11 elements, and *C* is a set with 7 elements. How many elements are in $C \times A$?

 $7 \times 9 = 63$

Let $P = \{x \in \mathbb{Z} \mid -4 < x \le -1\}$. Let $S = \{x \in \mathbb{Z}^- \mid x^2 < 10\}$

[a] Write *P* in set roster notation.

{-3, -2, -1}

[b] Is $2 \in S$? Why or why not ?

No, 2 ∉ Z⁻

[c] Is *P* a **proper subset** of *S*? Why or why not? (**HINT**: Write S in set roster notation.)

No, S does not contain any elements that are not also in P, since $S = P = \{-3, -2, -1\}$

Circle the two statements below which are true.

1 point for each circled answer which is a true statement, -1 point for each circled answer which is a false statement. 0 points if more than two statements are circled. Minimum 0 points total.

There is a function from {a, b, c} to {d, e, f} that is not a relation from {a, b, c} to {d, e, f}

 $(e, a) \in \{a, e, i, o, u\} \times \{d, b, c, a\}$

Let $J = \{7, 9\}$ and $K = \{-1, 2, 7\}$. Let *T* be the relation from *J* to *K* defined by *xTy* if and only if x - y is a multiple of 5.

[a] Write $J \times K$ in set roster notation.

 $\{(7, -1), (7, 2), (7, 7), (9, -1), (9, 2), (9, 7)\}$

[b] Write *T* in set roster notation.

 $\{(7, 2), (7, 7), (9, -1)\}$

[c] Is *T* a function ? Why or why not ?

No, $(7, 2) \in T$ and $(7, 7) \in T$, but $2 \neq 7$

 $\{\{2\}\} \subseteq \{\{1\}, \{2\}, \{3\}\}$

SCORE: ____ / 5 POINTS

SCORE: ____/ 3 POINTS

SCORE: / 1 POINTS

SCORE: ____ / 2 POINTS

Math 22 (9:30am – 10:20am) **Quiz 1 Version K** Fri Sep 30, 2011

SCORE: / 14 POINTS Write the **formal definition** of a function used in discrete math. Use correct English and mathematical notation. SCORE: ____ / 3 POINTS Given sets A and B, a relation F from A to B is a function if and only if for all $x \in A$, there is some $y \in B$ such that $(x, y) \in F$ and for all $x \in A$ and all $y \in B$ and $z \in B$, if $(x, y) \in F$ and $(x, z) \in F$, then y = zSuppose A is a set with 9 elements, B is a set with 11 elements, and C is a set with 7 elements. SCORE: / 1 POINTS How many elements are in $C \times C$? $7 \times 7 = 49$ Let $P = \{x \in \mathbb{Z} \mid -3 \le x < 0\}.$ SCORE: ____ / 3 POINTS Let $S = \{x \in \mathbb{Z}^{-} | x^2 < 10\}$ [a] Write P in set roster notation. -3, -2, -1} [b] Is $2 \in S$? Why or why not ? No, 2 ∉ Z⁻ [c] Is P a proper subset of S? Why or why not? (HINT: Write S in set roster notation.) No, S does not contain any elements that are not also in P, since $S = P = \{-3, -2, -1\}$ SCORE: / 2 POINTS Circle the two statements below which are true. 1 point for each circled answer which is a true statement, -1 point for each circled answer which is a false statement. 0 points if more than two statements are circled. Minimum 0 points total. $\{(e, a)\} \subseteq \{a, e, i, o, u\} \times \{d, b, c, a\}$

There is a function from {a, b, c} to {d, e, f} that is not a relation from {a, b, c} to {d, e, f} $\{\{2\}\} \in \{\{1\}, \{2\}, \{3\}\}$

There are 2 functions from {a} to {b, c}

Let $J = \{4, 6\}$ and $K = \{-1, 1, 4\}$. Let *T* be the relation from *J* to *K* defined by xTy if and only if x - y is a multiple of 5.

> Write $J \times K$ in set roster notation. [a]

> > $\{(4, -1), (4, 1), (4, 4), (6, -1), (6, 1), (6, 4)\}$

[b] Write T in set roster notation.

 $\{(4, -1), (4, 4), (6, 1)\}$

Is *T* a function ? Why or why not ? [c]

No, $(4, -1) \in T$ and $(4, 4) \in T$, but $-1 \neq 4$

SCORE: / 5 POINTS