Math 22 (9:30am – 10:20am) Quiz 6 Version W Fri Nov 18, 2011

SCORE: / 24 POINTS

In an element argument, the statement " $x \in A \cap B$ " translates into " $x \in A$ and $x \in B$ ". SCORE: / 3 POINTS Translate the following statements without using set complements. Simplify fully using logical equivalences where possible.

" $x \notin A \cup B$ " translates into "not ($x \in A$ or $x \in B$)" ie. " $x \notin A$ and $x \notin B$ "

" $x \notin A - B$ " translates into "not ($x \in A$ and $x \notin B$)" ie. " $x \notin A$ or $x \in B$ "

" $X \in \wp(A)$ " translates into " $X \subseteq A$ "

Prove the following statement using an element argument. Do not use any set identities.

SCORE: ___ / 7 POINTS

 $A \cap (A \cup B) = A$ for all sets A, B which are subsets of a universal set U

PROOF: Let $A, B \subseteq U$.

[NEED TO SHOW:	$A \cap (A \cup B) \subseteq A$	and	$A \subseteq A \cap (A \cup B)$
ie.	$\forall x \in A \cap (A \cup B), x \in A$	and	$\forall x \in A, x \in A \cap (A \cup B)]$

Let $x \in A \cap (A \cup B)$.	Let $x \in A$.
So, $x \in A$ and $x \in A \cup B$.	So, $x \in A$ or $x \in B$.
So, $x \in A$.	So, $x \in A \cup B$.
So, $A \cap (A \cup B) \subseteq A$.	And also $x \in A$, so, $x \in A \cap (A \cup B)$.
	So, $A \subseteq A \cap (A \cup B)$.

Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, therefore $A \cap (A \cup B) = A$. Let B be a Boolean algebra with operations + and \cdot .

Prove the following statement without using De Morgan's Laws. State the name of the law that justifies each step.

$$(a \cdot b) + (a + b) = 1$$
 for all $a, b \in B$

PROOF: Let $a, b \in B$.

$$(a \cdot b) + (\overline{a} + \overline{b})$$

$$= (\overline{a} + \overline{b}) + (a \cdot b)$$

$$= ((\overline{a} + \overline{b}) + a) \cdot ((\overline{a} + \overline{b}) + b)$$

$$= ((\overline{b} + \overline{a}) + a) \cdot ((\overline{a} + \overline{b}) + b)$$

$$= (\overline{b} + (\overline{a} + a)) \cdot (\overline{a} + (\overline{b} + b))$$

$$= (\overline{b} + (a + \overline{a})) \cdot (\overline{a} + (b + \overline{b}))$$

$$= (\overline{b} + (a + \overline{a})) \cdot (\overline{a} + (b + \overline{b}))$$

$$= (\overline{b} + 1) \cdot (\overline{a} + 1)$$

$$= 1$$

$$= 1 \cdot 1$$

Prove the following statement using set identities. State the name of the law that justifies each step.SCORE: / 7 POINTSNOTE: The law that translates a set difference into \cup and/or \cap and/or C is called the Set Difference Law.SCORE: / 7 POINTS

 $A \cap B = A - (A - B)$ for all sets A, B which are subsets of a universal set U

PROOF: Let
$$A, B \subseteq U$$
.
 $A - (A - B)$
 $= A \cap (A \cap B^{C})^{C}$ SET DIFFERENCE
 $= A \cap (A^{C} \cup (B^{C})^{C})$ DE MORGAN'S LAW
 $= A \cap (A^{C} \cup B)$ DOUBLE COMPLEMENT
 $= (A \cap A^{C}) \cup (A \cap B)$ DISTRIBUTIVE
 $= \emptyset \cup (A \cap B)$ UNIVERSAL BOUNDS
 $= (A \cap B) \cup \emptyset$ COMMUTATIVE
 $= A \cap B$ IDENTITY

Math 22 (9:30am – 10:20am) Quiz 6 Version A Fri Nov 18, 2011

SCORE: / 24 POINTS

In an element argument, the statement " $x \in A \cap B$ " translates into " $x \in A$ and $x \in B$ ". SCORE: / 3 POINTS Translate the following statements without using set complements. Simplify fully using logical equivalences where possible.

" $x \notin A - B$ " translates into "not ($x \in A$ and $x \notin B$)" ie. " $x \notin A$ or $x \in B$ "

" $X \in \wp(A)$ " translates into " $X \subseteq A$ "

" $x \notin A \cup B$ " translates into "not ($x \in A$ or $x \in B$)" ie. " $x \notin A$ and $x \notin B$ "

Prove the following statement using set identities. State the name of the law that justifies each step. SCORE: ____/ 7 POINTS NOTE: The law that translates a set difference into \cup and/or \cap and/or C is called the Set Difference Law.

 $A \cap B = A - (A - B)$ for all sets A, B which are subsets of a universal set U

PROOF: Let
$$A, B \subseteq U$$
.
 $A - (A - B)$
 $= A \cap (A \cap B^{C})^{C}$ SET DIFFERENCE
 $= A \cap (A^{C} \cup (B^{C})^{C})$ DE MORGAN'S LAW
 $= A \cap (A^{C} \cup B)$ DOUBLE COMPLEMENT
 $= (A \cap A^{C}) \cup (A \cap B)$ DISTRIBUTIVE
 $= \emptyset \cup (A \cap B)$ UNIVERSAL BOUNDS
 $= (A \cap B) \cup \emptyset$ COMMUTATIVE
 $= A \cap B$ IDENTITY

 $A \cap (A \cup B) = A$ for all sets A, B which are subsets of a universal set U

PROOF: Let $A, B \subseteq U$.

[NEED TO SHOW:	$A \cap (A \cup B) \subseteq A$	and	$A \subseteq A \cap$	$(A \cup B)$
ie.	$\forall x \in A \cap (A \cup B), x \in A$	and	$\forall x \in A,$	$x \in A \cap (A \cup B)]$
Let $x \in A \cap (A \cup B)$.	Let $x \in A$.			
So, $x \in A$ and $x \in A \cup B$.	So, $x \in A$ or $x \in I$	В.		
So, $x \in A$.	So, $x \in A \cup B$.			
So, $A \cap (A \cup B) \subseteq A$.	And also $x \in A$, so	$x \in A \cap (A$	$\cup B)$.	
	So, $A \subseteq A \cap (A \cup$	(\mathcal{B}) .		
Since $A \cap (A \cup B) \subseteq A$ and A	$A \subseteq A \cap (A \cup B),$			
therefore $A \cap (A \cup B) = A$.				

Let *B* be a Boolean algebra with operations + and •. SCORE: ____ / 7 POINTS Prove the following statement without using De Morgan's Laws. State the name of the law that justifies each step.

$$(a \cdot b) + (\overline{a} + \overline{b}) = 1$$
 for all $a, b \in B$

PROOF: Let $a, b \in B$.

$$(a \cdot b) + (a + b)$$

$$= (\overline{a} + \overline{b}) + (a \cdot b)$$

$$= ((\overline{a} + \overline{b}) + a) \cdot ((\overline{a} + \overline{b}) + b)$$

$$= ((\overline{a} + \overline{a}) + a) \cdot ((\overline{a} + \overline{b}) + b)$$

$$= (\overline{b} + (\overline{a} + a)) \cdot (\overline{a} + (\overline{b} + b))$$

$$= (\overline{b} + (a + \overline{a})) \cdot (\overline{a} + (b + \overline{b}))$$

$$= (\overline{b} + (a + \overline{a})) \cdot (\overline{a} + (b + \overline{b}))$$

$$= (\overline{b} + 1) \cdot (\overline{a} + 1)$$

$$= 1 \cdot 1$$

Math 22 (9:30am – 10:20am) Quiz 6 Version X Fri Nov 18, 2011

SCORE: / 24 POINTS

In an element argument, the statement " $x \in A \cap B$ " translates into " $x \in A$ and $x \in B$ ". SCORE: / 3 POINTS Translate the following statements without using set complements. Simplify fully using logical equivalences where possible.

" $X \in \wp(A)$ " translates into " $X \subseteq A$ "

" $x \notin A \cup B$ " translates into "not ($x \in A$ or $x \in B$)" ie. " $x \notin A$ and $x \notin B$ "

" $x \notin A - B$ " translates into "not ($x \in A$ and $x \notin B$)" ie. " $x \notin A$ or $x \in B$ "

Let B be a Boolean algebra with operations + and \cdot . Prove the following statement without using De Morgan's Laws. State the name of the law that justifies each step.

SCORE: / 7 POINTS

$$(a \cdot b) + (a + b) = 1$$
 for all $a, b \in B$

PROOF: Let $a, b \in B$.

 $(a \cdot b) + (\overline{a} + \overline{b})$ $= (\overline{a} + \overline{b}) + (a \cdot b) \quad \text{COMMUTATIVE}$ $= ((\overline{a} + \overline{b}) + a) \cdot ((\overline{a} + \overline{b}) + b) \quad \text{DISTRIBUTIVE}$ $= ((\overline{b} + \overline{a}) + a) \cdot ((\overline{a} + \overline{b}) + b) \quad \text{COMMUTATIVE}$ $= (\overline{b} + (\overline{a} + a)) \cdot (\overline{a} + (\overline{b} + b)) \quad \text{ASSOCIATIVE}$ $= (\overline{b} + (a + \overline{a})) \cdot (\overline{a} + (b + \overline{b})) \quad \text{COMMUTATIVE}$ $= (\overline{b} + 1) \cdot (\overline{a} + 1) \quad \text{COMPLEMENT}$ $= 1 \quad \text{UNIVERSAL BOUNDS}$ $= 1 \quad \text{IDENTITY}$

Prove the following statement using set identities. State the name of the law that justifies each step. NOTE: The law that translates a set difference into \cup and/or \cap and/or C is called the Set Difference Law.

SCORE: / 7 POINTS

 $A \cap B = A - (A - B)$ for all sets A, B which are subsets of a universal set U

PROOF: Let $A, B \subseteq U$. A - (A - B) $= A \cap (A \cap B^{C})^{C}$ SET DIFFERENCE $= A \cap (A^{C} \cup (B^{C})^{C})$ DE MORGAN'S LAW $= A \cap (A^{C} \cup B)$ DOUBLE COMPLEMENT $= (A \cap A^{C}) \cup (A \cap B)$ DISTRIBUTIVE $= \emptyset \cup (A \cap B)$ UNIVERSAL BOUNDS $= (A \cap B) \cup \emptyset$ COMMUTATIVE $= A \cap B$ IDENTITY

Prove the following statement using an element argument. Do not use any set identities.

SCORE: / 7 POINTS

 $A \cap (A \cup B) = A$ for all sets A, B which are subsets of a universal set U

PROOF: Let $A, B \subseteq U$.

[NEED TO SHOW:	$A \cap (A \cup B) \subseteq A$	and	$A \subseteq A \cap (A \cup B)$
ie.	$\forall x \in A \cap (A \cup B), x \in A$	and	$\forall x \in A, x \in A \cap (A \cup B)]$

Let $x \in A \cap (A \cup B)$.	Let $x \in A$.
So, $x \in A$ and $x \in A \cup B$.	So, $x \in A$ or $x \in B$.
So, $x \in A$.	So, $x \in A \cup B$.
So, $A \cap (A \cup B) \subseteq A$.	And also $x \in A$, so, $x \in A \cap (A \cup B)$
	So, $A \subseteq A \cap (A \cup B)$.

Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, therefore $A \cap (A \cup B) = A$. Math 22 (9:30am – 10:20am) Quiz 6 Version Y Fri Nov 18, 2011

SCORE: / 24 POINTS

Prove the following statement using set identities. State the name of the law that justifies each step. SCORE: ____ / 7 POINTS NOTE: The law that translates a set difference into \cup and/or \cap and/or C is called the Set Difference Law.

 $A \cap B = A - (A - B)$ for all sets A, B which are subsets of a universal set U

PROOF: Let $A, B \subseteq U$. A - (A - B) $= A \cap (A \cap B^{C})^{C}$ SET DIFFERENCE $= A \cap (A^{C} \cup (B^{C})^{C})$ DE MORGAN'S LAW $= A \cap (A^{C} \cup B)$ DOUBLE COMPLEMENT $= (A \cap A^{C}) \cup (A \cap B)$ DISTRIBUTIVE $= \emptyset \cup (A \cap B)$ UNIVERSAL BOUNDS $= (A \cap B) \cup \emptyset$ COMMUTATIVE $= A \cap B$ IDENTITY

Let B be a Boolean algebra with operations + and \cdot . Prove the following statement <u>without using De Morgan's Laws</u>. State the name of the law that justifies each step.

SCORE: / 7 POINTS

 $(a \cdot b) + (\overline{a} + \overline{b}) = 1$ for all $a, b \in B$

PROOF: Let $a, b \in B$.

$$(a \cdot b) + (\overline{a} + \overline{b})$$

$$= (\overline{a} + \overline{b}) + (a \cdot b)$$

$$= ((\overline{a} + \overline{b}) + a) \cdot ((\overline{a} + \overline{b}) + b)$$

$$= ((\overline{b} + \overline{a}) + a) \cdot ((\overline{a} + \overline{b}) + b)$$

$$= (\overline{b} + (\overline{a} + a)) \cdot (\overline{a} + (\overline{b} + b))$$

$$= (\overline{b} + (a + \overline{a})) \cdot (\overline{a} + (b + \overline{b}))$$

$$= (\overline{b} + (a + \overline{a})) \cdot (\overline{a} + (b + \overline{b}))$$

$$= (\overline{b} + 1) \cdot (\overline{a} + 1)$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

 $A \cap (A \cup B) = A$ for all sets A, B which are subsets of a universal set U

PROOF: Let $A, B \subseteq U$.

Let

[NEED TO SHOW:	$A \cap (A \cup B) \subseteq A$	and	$A \subseteq A \cap (A \cup B)$
ie.	$\forall x \in A \cap (A \cup B), x \in A$	and	$\forall x \in A, x \in A \cap (A \cup B)]$
$x \in A \cap (A \cup B)$.	Let $x \in A$.		

So, $x \in A$ or $x \in B$.
So, $x \in A \cup B$.
And also $x \in A$, so, $x \in A \cap (A \cup B)$
So, $A \subseteq A \cap (A \cup B)$.

Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, therefore $A \cap (A \cup B) = A$.

In an element argument, the statement " $x \in A \cap B$ " translates into " $x \in A$ and $x \in B$ ". SCORE: ____/ 3 POINTS Translate the following statements without using set complements. Simplify fully using logical equivalences where possible.

" $x \notin A \cup B$ " translates into "not $(x \in A \text{ or } x \in B)$ " i.e. " $x \notin A$ and $x \notin B$ " " $x \notin A - B$ " translates into "not $(x \in A \text{ and } x \notin B)$ " i.e. " $x \notin A \text{ or } x \in B$ " " $X \in \wp(A)$ " translates into " $X \subseteq A$ "