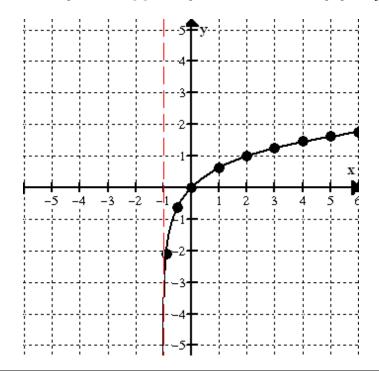
Math 114 Midterm 3 Part 2 Version L Wed Jun 8, 2011 Name:

SCORE: _____/ 35 POINTS

NON-GRAPHING CALCULATORS ONL

Let $f(x) = \log_3(x+1)$.

SCORE: ____ / 12 POINTS


[a] What is the equation of the vertical asymptote of the graph of f(x)? x = -1

x + 1 > 0x > -1

 [b] Fill in the following table of values. Choose your values of x based on your answer to [a] and the guidelines given in the graphing handout. Round your answers to 1 decimal place. YOU MAY USE DIFFERENT x-VALUES, BUT AT LEAST TWO OF THEM MUST BE BETWEEN -1 (THE VERTICAL ASYMPTOTE) AND 0 (THE NEXT INTEGER).

Value of <i>x</i>	•	- 0.9	- 0.5	0	1	2	3
Value of $f(x)$	•	- 2.1	- 0.6	0	0.6	1	1.3

[c] Plot the points from [b] on the grid below, and draw the graph of f(x).

PUT A BOX AROUND EACH FINAL ANSWER

Find the intensity of an earthquake with Richter magnitude 5.8. <u>SHOW PROPER WORK.</u> <u>Round your answer to the nearest whole number.</u> SCORE: ____ / 4 POINTS

$$5.8 = \log I$$

 $I = 10^{5.8} \approx 630,957$ microns

Find the exact solution of $8^{x-4} = 5^{x+3}$. <u>SHOW PROPER WORK. NO CREDIT FOR GUESS & CHECK.</u> SCORE: ____ / 10 POINTS Also, use your calculator to find the decimal approximation of your exact solution, rounded to 4 decimal places.

 $log 8^{x-4} = log 5^{x+3}$ (x - 4) log 8 = (x + 3) log 5 x log 8 - 4 log 8 = x log 5 + 3 log 5 x log 8 - x log 5 = 3 log 5 + 4 log 8 x(log 8 - log 5) = 3 log 5 + 4 log 8 $x = \frac{3 log 5 + 4 log 8}{log 8 - log 5} \approx 27.9702$

If you deposit \$2900 into an account that pays 2.17% interest annually, SCORE: ____/ 9 POINTS after how many years will the value of the account be \$3500 ? Round your answer to 2 decimal places. SHOW PROPER WORK.

$$3500 = 2900(1 + 0.0217)^{t}$$
$$\frac{3500}{2900} = (1.0217)^{t}$$
$$\log \frac{35}{29} = \log 1.0217^{t}$$
$$\log \frac{35}{29} = t \log 1.0217$$
$$\frac{\log \frac{35}{29}}{\log 1.0217} = t$$
$$\frac{\log 1.0217}{t \approx 8.76}$$
 years