Math 1B (7:30am - 8:20am)
Quiz 4 Version C
Fri May 6, 2011

What month is your birthday? What are the first 2 digits of your address? What are the last 2 digits of your zip code? What are the last 2 digits of your DeAnza ID number?

SCORE: ___/ 30 POINTS

NO CALCULATORS ALLOWED

SHOW PROPER ALGEBRAIC WORK USE PROPER NOTATION & SIMPLIFY ALL ANSWERS WHERE REASONABLE

SCORE: /3 POINTS

MULTIPLE CHOICE: CIRCLE THE CORRECT ANSWER $\int_0^{\infty} \pi (1-y^2)^2 dy$ SCORE: ___/ If you revolve the region in Q₁ bounded by $y = \sqrt{x}$, x = 1 and y = 0 around the line x = 1, the volume of the resulting solid is

[a]

[c] $\frac{2\pi}{3}$

Find the area between the curves $y = \frac{2}{x^2}$ and $y = \frac{x}{4}$ on the interval $1 \le x \le 4$.

SCORE: / 6 POINTS

$$\int_{1}^{2} \left(\frac{1}{x^{2}} - \frac{x}{4} \right) dx + \int_{2}^{4} \left(\frac{x}{4} - \frac{2}{x^{2}} \right) dx$$

$$= \left(-\frac{2}{x^{-1}} - \frac{x^{2}}{8} \right) \Big|_{1}^{2} + \left(\frac{x^{2}}{8} + \frac{2}{x^{-1}} \right) \Big|_{2}^{4}$$

$$= \left(-\frac{2}{2} - \frac{4}{8} \right) - \left(-\frac{2}{1} - \frac{1}{8} \right) + \left(\frac{16}{8} + \frac{2}{4} \right) - \left(\frac{4}{8} + \frac{2}{2} \right)$$

$$= \frac{13}{8}$$

The base of a solid is the region bounded by $y = x^2 + 3x$ and y = 2x + 12. Cross sections perpendicular to SCORE: ___ / 6 POINTS the x – axis are semicircles. Write, <u>BUT DO NOT EVALUATE</u>, an integral (or sum of integrals) for the volume of the solid.

 $x^2 + 3x = 2x + 12$ X2 + X-12=0

(x+4)(x-3)=0x = -4.3

Write, BUT DO NOT EVALUATE, an integral (or sum of integrals) for the volume of the solid.

$$\int_{-3}^{1} \frac{1}{2} \left[(11 - y^{2})^{2} - (11 - (3 - 2y))^{2} \right] dy$$

$$\int_{-3}^{1} \frac{1}{2} \left[(11 - y^{2})^{2} - (8 + 2y)^{2} \right] dy$$

Consider the triangle with vertices (0, 0), (1, 7) and (3, 3).

SCORE: /9 POINTS

Write, BUT DO NOT EVALUATE, a dx integral (or sum of integrals) for the area of the triangle. a Your integrand must NOT use absolute values.

$$y=7x$$
 $(1,7)$
 $y=-2x+6$
 $x=9-y$
 $(3,3)$
 $y=4$
 $y=x$

$$(1,7) \quad y = -2x + 9$$

$$x = 9 - y$$

$$y = -2x + 9$$

$$(7x - x) dx + \int_{1}^{3} (-2x + 9 - x) dx$$

$$y = x$$

$$y = x$$

$$\int_{1}^{1} 6x dx + \int_{1}^{3} (9 - 3x) dx$$

[b] Write, **BUT DO NOT EVALUATE**, a dy integral (or sum of integrals) for the area of the triangle. Your integrand must NOT use absolute values.

$$\int_{0}^{3} (y - \frac{4}{7}) dy + \int_{3}^{7} (\frac{9 - y}{2} - \frac{4}{7}) dy$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2$$