Math 1B (7:30am	1 - 8:20am
Quiz 5 Version 8	
Fri May 13, 2011	
Fri May 13, 2011	

What month is your birthday?

What are the first 2 digits of your address?

What are the last 2 digits of your zip code? What are the last 2 digits of your DeAnza ID number?

SCORE: ___/30 POINTS

SHOW P USE PROPER NOTATION & S		BRAIC WORK ANSWERS WHER	RE REASONABLE
MULTIPLE CHOICE: CIRCLE THE CORRECT A 5 foot long chain weighing 20 pounds hangs from from the floor.) How many foot-pounds of work are dot (HINT: Draw "before" and "after" diagrams.)	a hook in the ceiling of		
[a] (25) [b] 10	[<u>c</u>] 20	[<u>d</u>] 30	[<u>e</u>] 15
A 50 foot chain weighing 4 pounds per foot hangs over to lift a 25 pound tabletop from ground level to a wind Write, BUT DO NOT EVALUATE , an expression inv	dow 20 feet above gro	und.	
30 ft	£		TALK TO ME
IF X= O IS ROOF OR IF X= AND X=50 IS GROUND AND X=	50 IS ROOF	0	IF YOU USED
$(25)(20) + \int_{30}^{59} 4x dx$ $(25)(20)$	0P	×)d×	ANY OTHER SCALE FOR X
$\int_{0}^{20} (25 + 4(50 - x)) dx$	(25+4×)c	×	
A tank in the shape of the triangular prism shown on the Write, BUT DO NOT EVALUATE , an integral for the			SCORE:/ 6 POINTS
AND X=2 IS TOP OF TANK AND X=3 IS TOP OF SPOUT			4 m
(3) (3-x) dx		1 m	
AND X=2 IS BOTTOM OF TANK			8 m
AND X=-1 IS TOP OF SPOUT	OR		TOP OF SPOUT

The region bounded by x = 1, $y = \ln x$ and y = 1 is revolved around the y - axis.

SCORE: / 6 POINTS

= 2TT Se(x-xlnx)dx

= 2T (4x2(3-2/nx))

 $=2\pi(4e^2-\frac{3}{4})$

Find the volume of the solid.

$$y = \ln x$$
 $x = e^y$

$$\frac{1}{2} \sum_{x=1}^{\infty} \frac{1}{2} \frac{1}{2}$$

The region bounded by
$$y = -2$$
, $y = \frac{1}{2}x - 1$ and $y = x - 2$ is revolved around the line $y = 1$.

$$\frac{ZI}{2}(e^2-3), \frac{1}{2}$$
SCORE: /9 POINTS

Write, BUT DO NOT EVALUATE, an integral (or sum of integrals) for the volume of the solid using the shell method [a]

$$y = \frac{1}{2} \times -1 \times -1 \times T \times (2,0) \quad y - 1 \times T \times (0,-1) \quad \frac{1}{2} \times -1 = -2 \rightarrow x = 2$$

$$y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-1) \quad \frac{1}{2} \times -1 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (2,0) \quad y - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (0,-2) \quad x - 2 = -2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (0,-2) \quad x - 2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = x - 2 \quad x - 1 \times T \times (0,-2) \quad x - 2 \rightarrow x = 0$$

$$y = \frac{1}{2} \times -1 \quad y = \frac{1}{$$

[b]

$$\int_{-2}^{0} \pi \left(3^{2} - \left(1 - \left(\frac{1}{2} \times -1\right)\right)^{2}\right) dx + \int_{0}^{2} \pi \left(\left(1 - \left(\frac{1}{2} \times -1\right)\right)^{2} - \left(1 - \left(\frac{1}{2} \times -1\right)\right)^{2}\right) dx$$

$$= \frac{4}{1-2} \pi \left(9 - \left(2 - \frac{1}{2} \times\right)^{2}\right) dx + \frac{4}{1-2} \pi \left(3 - x\right)^{2} - \left(2 - \frac{1}{2} \times\right)^{2}\right) dx$$

$$= \frac{4}{1-2} \pi \left(9 - \left(2 - \frac{1}{2} \times\right)^{2}\right) dx + \frac{4}{1-2} \pi \left(3 - x\right)^{2} - \left(2 - \frac{1}{2} \times\right)^{2}\right) dx$$

[c] Find the volume of the solid by evaluating the appropriate integral(s) from either [a] or [b].

$$\int_{-2}^{0} 2\pi (y^{2}-y) dy$$

$$= 2\pi (\frac{1}{3}y^{3}-\frac{1}{2}y^{2})\Big|_{-2}^{0}$$

$$= 2\pi (0-(-\frac{2}{3}-2))$$

$$= \frac{28\pi}{3}$$