Explanation of some solutions from Quiz 5

The multiple choice question

BEFORE	AFTER
O	OO
O	
O	
O	
O	

NET DIFFERENCE

bottom half of the chain all lifted exactly half the length of the chain

WORK DONE

 $(\frac{1}{2} \times \text{total weight of the chain}) \times (\frac{1}{2} \times \text{total length of the chain}).$

The chain & tabletop question

Solution for the following version of the problem:

A 50 foot chain weighing 4 pounds per foot hangs over the edge of a 50 foot tall building. The chain is used to lift a 25 pound tabletop from ground level to a window 20 feet above ground.

BEFORE

AFTER

50 feet of chain hanging from roof tabletop on ground

20 feet of chain on roof 30 feet of chain hanging from roof tabletop 20 feet above ground

0 0 0 O O

TABLETOP ON GROUND

GROUND

NET DIFFERENCE

bottom 20 feet of the chain lifted various distances to the roof tabletop lifted 20 feet

WORK DONE ON TABLETOP

 $W_{tabletop}$ = weight of the tabletop × distance moved by the tabletop = 25 pounds × 20 feet

WORK DONE ON CHAIN

each small piece of chain had length Δx feet and density 4 pounds per foot so $F_{1\, \text{piece}}=4\Delta x$ pounds

looking at the 20 feet of chain that was moved to the roof

if x = 0 at the roof and x = 50 at the ground if x = 0 at the ground and x = 50 at the roof

top end was originally at

x = 30

x = 20

and was moved d = 30 feet to the roof

bottom end was originally at

x = 50

x = 0

and was moved d = 50 feet to the roof

$$d_{1 \text{ piece}} = x \text{ feet}$$

$$W_{1 \text{ piece}} = F_{1 \text{ piece}} d_{1 \text{ piece}}$$

$$= 4\Delta x \text{ pounds} \times x \text{ feet}$$

$$W_{\text{chain}} = \int_{30}^{50} 4x \, dx$$

$$d_{1 \text{ piece}} = (50 - x) \text{ ft}$$

$$W_{1 \text{ piece}} = F_{1 \text{ piece}} d_{1 \text{ piece}}$$

$$= 4\Delta x \text{ pounds} \times (50 - x) \text{ feet}$$

$$W_{\text{chain}} = \int_{0}^{20} 4(50 - x) dx$$

TOTAL WORK DONE =
$$W_{\text{tabletop}} + W_{\text{chain}} = 25 \times 20 + \int_{30}^{50} 4x \ dx$$

$$W_{\text{chain}} = \int_{0}^{20} 4(50 - x) dx$$
$$= 25 \times 20 + \int_{0}^{20} 4(50 - x) dx$$

The water tank question

Solution for the version of the question with the 1 m tall spout:

"slicing" the water horizontally creates slices which look like rectangular prisms up-and-down height of each slide is Δx m front-to-back length of each slice is 8 m

if top of spout at
and top of tank at
and bottom of tank at

 $\mathbf{x} = \mathbf{0}$

top slice was originally at

$$x = 2$$

$$x = 0$$

x = 2

$$x = 1$$

x = 3

and had a side-to-side width of 4 m and was moved 1 m to the top of the spout

and had a side-to-side width of 0 m and was moved 3 m to the top of the spout

$$2x m$$

$$d_{1 \text{ slice}} = (3 - x) m$$

$$(4-2x) m$$

 $d_{1 \text{ slice}} = (x+1) m$

$$(6-2x) m$$
$$d_{1 \text{ slice}} = x m$$

$$volume_{1 \; slice} =$$

$$(8)(2x)(\Delta x) \text{ m}^3$$

$$(8)(4-2x)(\Delta x) \text{ m}^3$$

$$(8)(6-2x)(\Delta x) \text{ m}^3$$

 $mass_{1 slice} = volume_{1 slice} \times density of water (1000 kg/m³)$

 $F_{1 \text{ slice}} = \text{mass}_{1 \text{ slice}} \times \text{acceleration due to gravity (9.8 m/s}^2)$

$$W_{1 \text{ slice}} = F_{1 \text{ slice}} d_{1 \text{ slice}} =$$

$$\frac{(9.8)(1000)(8)(2x)(3-x)(\Delta x)}{(9.8)(1000)(8)(4-2x)(x+1)(\Delta x)}$$
$$\frac{(9.8)(1000)(8)(6-2x)(x)(\Delta x)}{(9.8)(1000)(8)(6-2x)(x)(\Delta x)}$$

WORK DONE

$$= \int_{0}^{2} 9.8(1000)(8)(2x)(3-x) dx$$

$$= \int_{0}^{2} 9.8(1000)(8)(4-2x)(x+1) dx$$

$$= \int_{1}^{3} 9.8(1000)(8)(6-2x)(x) dx$$