Math 1A (10:30am – 11:20am) Midterm 1 Version D Wed Jan 26, 2011	What month is your birthday? What are the first 2 digits of your address? What are the last 2 digits of your zip code? What are the last 2 digits of your DeAnza ID number?

SCORE: ___ / 150 POINTS

NO CALCULATORS OR DIFFERENTIATION SHORTCUTS (CH 3) ALLOWED

SHOW PROPER CALCULUS LEVEL ALGEBRAIC WORK AND USE PROPER NOTATION

YOU DO NOT NEED TO SHOW THE USE OF THE LIMIT LAWS UNLESS SPECIFICALLY ASKED FOR

State the complete definition of "the derivative (function)".	SCORE: / 5 POINTS

SEE 7:30 VERSION A

State the Intermediate Value Theorem.

SCORE: ___/ 5 POINTS

SEE 7:30 VERSION A

State the complete definition of "horizontal asymptote".

SCORE: ___/ 5 POINTS

SEE 7:30 VERSION A

The number of freshmen who apply to major in a certain field depends on the average starting salary in that field. SCORE: ___ / 15 POINTS Let f = a(s), where f is the number of freshmen who apply, and s is the average starting salary (in thousands of dollars).

- [a] What are the units of a'(s)?
- [b] Give the practical meaning (including units) of a'(100) = 50.

SEE 10:30 VERSION C

[c] Is there a value of s_0 for which you would expect $a'(s_0) < 0$? Why or why not?

Let
$$f(x) = \frac{x^2 - x - 12}{9 - x^2}$$
.

SCORE: ___ / 25 POINTS

- [a] Find all discontinuities of f.
- [b] Find the limit of f at each discontinuity. Each limit should be a number, ∞ or $-\infty$. Write DNE only if the other possibilities do not apply.

SEE 10:30 VERSION C

 $\label{eq:continuity} [\mathbf{c}] \qquad \text{State the type of each discontinuity of } f \ .$

Let
$$f(x) = 2x^2 - 4x^3$$
.

SCORE: ___ / 25 POINTS

[a] Find f'(x).

SEE 10:30 VERSION C

[b] Find the equation of the tangent line to y = f(x) at x = -1.

Find the **equation(s)** of the horizontal asymptote(s) of $f(x) = \frac{\tan^{-1} x}{e^x + 4}$.

SCORE: ___ / 15 POINTS

Show the proper use of the limit laws.

SEE 10:30 VERSION C

The volume of water in a reservoir t hours after noon is $V(t) = \frac{6+t}{2+\sqrt{t}}$ million gallons.

SCORE: ___/ 25 POINTS

[a] What was the average rate of change of the volume from noon to 4 pm? Specify the units of your answer.

SEE 10:30 VERSION C

[b] What was the instantaneous rate of change of the volume at 9 pm?

Specify the units of your answer, and specify if the population was increasing or decreasing.

 $V'(9) = \lim_{h \to 0} \frac{V(9+h) - V(9)}{h}$ $= \lim_{h \to 0} \frac{15+h}{2+\sqrt{9+h'}} - 3 \cdot \frac{2+\sqrt{9+h'}}{2+\sqrt{9+h}}$ $= \lim_{h \to 0} \frac{(9+h) - 3\sqrt{9+h'}}{h} \cdot \frac{(9+h) + 3\sqrt{9+h'}}{(9+h) + 3\sqrt{9+h'}}$ $= \lim_{h \to 0} \frac{(9+h) - 3\sqrt{9+h'}}{h} \cdot \frac{(9+h) + 3\sqrt{9+h'}}{(9+h) + 3\sqrt{9+h'}}$ $= \lim_{h \to 0} \frac{9k + h^2}{k(2+\sqrt{9+h'})((9+h) + 3\sqrt{9+h'})}$ $= \lim_{h \to 0} \frac{9k + h^2}{k(2+\sqrt{9+h'})((9+h) + 3\sqrt{9+h'})}$ $= \lim_{h \to 0} \frac{9k + h^2}{k(2+\sqrt{9+h'})((9+h) + 3\sqrt{9+h'})}$

Consider the function $f(x) = \tan x$ on the interval $\left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$ with d = 0.

SCORE: ___ / 15 POINTS

[a] Does this situation satisfy the conditions of the Intermediate Value Theorem? Why or why not?

[b] Does this situation satisfy the conclusion of the Intermediate Value Theorem? Why or why not?

[c] Can the Intermediate Value Theorem be used to prove that $\tan x = 0$ somewhere in the interval $\left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$? Why or why not?

The graph of f(x) is shown below. Sketch a graph of f'(x) on the same axes.

SCORE: ___ / 15 POINTS

