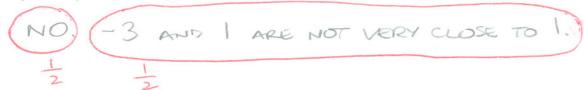
What month is your birthday? What are the first 2 digits of your address? What are the last 2 digits of your zip code? What are the last 2 digits of your DeAnza ID number?

SCORE: ___ / 20 POINTS

UNLESS STATED OTHERWISE WRITE DOWN THE CALCULATIONS USED TO FIND YOUR ANSWERS

To find $\lim_{x \to \infty} p(x)$, name 3 values of x for which you might want to know the value of p(x).

SCORE: ___/ 2 POINTS

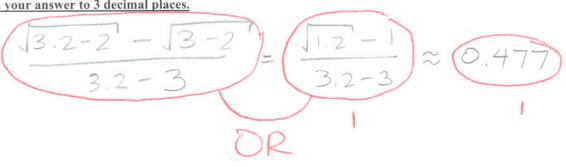

Some values for a function f are given in the table below.

SCORE: ___/ 4 POINTS

x	-5	-3	-1	1	3	5
f(x)	13	5	2	-2	-11	-7

Estimate the slope of the tangent line to y = f(x) at x = -1 by finding and averaging the slope of 2 appropriate secant lines. [a]

[b] Do you think your estimate in [a] would be close to the actual slope of the tangent line? Why or why not?



The position of an object travelling along a straight line is given by $s(t) = \sqrt{t-2}$.

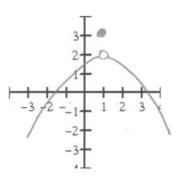
SCORE: ___/ 2 POINTS

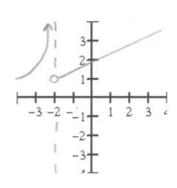
Find the average velocity of the object for the time period beginning when t = 3 and lasting 0.2 second.

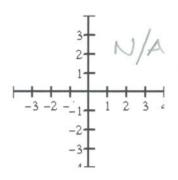
Round your answer to 3 decimal places.

f(1) exists,

$$\lim_{x\to -2^+} g(x) = 1,$$


 $\lim_{x \to -3^{-}} h(x) = -1,$


$$\lim_{x \to 1} f(x) \text{ exists,}$$


$$\lim_{x \to -2^{-}} g(x) = \infty$$

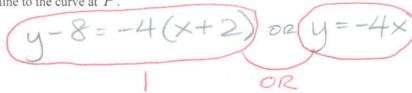
$$\lim_{x \to -3} h(x) = 1$$

 $\lim_{x \to 1} f(x) \neq f(1)$

The point P lies on the curve $y = \frac{x^3}{1+x}$. The x – coordinate of P is -2.

SCORE: ___ / 5 POINTS

[a] If Q is the point $(x, \frac{x^3}{1+x})$, use your calculator to find the slope of the secant line PQ (correct to 3 decimal places) for the following values of x. You do NOT need to write down the calculations you used.


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2 1011	1 EXCH
slope of secant line (3.550) -3.960 (-3.996) (-4.004) (-4.040) (-4.367)	X	-1.8	-1.98	-1.998	-2.002	-2.02	-2.2
	slope of secant line	(3.550)	(-3.960)	(-3.996)	F4.004	(-4.040	-4.367

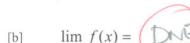
Using the results of part (a) (and any additional values), guess the value of the slope of the tangent line to the curve at P.

[c] Using the slope from part (b), find an equation of the tangent line to the curve at P.

AT
$$x = -2$$
, $y = 8$

FILL IN THE BLANKS. The graph of a function f is shown on the right.

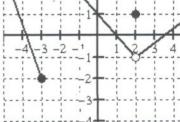
State the values of the following expressions, if they exist. Write DNE where appropriate.


You do NOT need to show work.

[a]
$$f(-3) =$$

$$(-2)$$

$$\lim_{x \to -3^+} f(x) = \left(\frac{1}{x} \right)$$


[f]
$$f(-1) =$$

$$\lim_{x \to -1} f(x) =$$

SCORE: / 4 POINTS

[d]
$$f(2) =$$

$$\lim_{x \to -2} f(x) =$$

[g]

1 POINT EACH