Math 1A (7:30am - 8:20am)
Quiz 1 Version B
Fri Jan 14, 2011

What month is your birthday?
What are the first 2 digits of your address?
What are the last 2 digits of your zip code?
What are the last 2 digits of your DeAnza ID number?

SCORE: ___/ 30 POINTS

NO CALCULATORS ALLOWED

SHOW PROPER ALGEBRAIC WORK AND USE PROPER NOTATION

YOU DO NOT NEED TO SHOW THE USE OF THE LIMIT LAWS UNLESS SPECIFICALLY ASKED FOR

State the Squeeze Theorem.

SCORE: ___/ 2 POINTS

SEE 7:30 VERSION A

State the complete definition of "vertical asymptote".

SCORE: /2 POINTS

SEE 7:30 VERSION A

Let $f(x) = \begin{cases} 2x+15, & \text{if } x < -2\\ 3-4x, & \text{if } -2 < x \le 1.\\ x-2, & \text{if } x > 1 \end{cases}$

SCORE: ___ / 7 POINTS

[a] Is f(x) continuous at x = 1?

If yes, show that all three conditions of continuity are satisfied. If no, show that at least one condition is not satisfied.

 $\frac{x \in S}{f(1)} = 3-4(1) = -1$ $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} (3-4x) = -1$ $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x-2) = -1$ $\lim_{x \to 1^{+}} f(x) = -1 = f(1)$

[b] Is f(x) continuous at x = -2?

If yes, show that all three conditions of continuity are satisfied. If no, show that at least one condition is not satisfied.

NO. F(-2) DNE

The answer should be a number, ∞ or $-\infty$. Write DNE only if the other possibilities do not apply.

[b]
$$\lim_{y \to 2} \frac{y^3 + 8}{2y^2 + 5y - 12} = \frac{16}{6} = \frac{8}{3}$$

$$= \lim_{c \to -1} \frac{6 - 2(c+4)}{(c+1)(c+4)}$$

$$= \lim_{c \to -1} \frac{-2(c+1)(c+4)}{(c+1)(c+4)}$$

$$= \lim_{c \to -1} \frac{-2(c+1)}{(c+1)(c+4)}$$

(CAD) I FOR FACTORING NUMBRATOR

FOR CANCELLING

 $= -\frac{2}{3}$

SUBTRACT I POINT TOTAL IF YOU FORGOT ANY OF THESE

[c] $\lim_{t \to 4} \frac{t-4}{3-\sqrt{t^2-7}} \stackrel{\bigcirc}{\circ}$ = $\lim_{t \to 4} \frac{(t-4)(3+\sqrt{t^2-7})}{9-(t^2-7)}$

[d]
$$\lim_{x \to 3^+} \frac{x^3 - 18}{3 - x} \qquad \frac{q}{0} \quad \text{or} \quad \begin{array}{c} \times 3 - 18 \to 9 \\ 3 - \times \to 0 \end{array}$$

$$= -\infty$$

 $= \lim_{t \to 4} \frac{(t-4)(3+1t^2-7)}{(t-4)(3+1t^2-7)}$ $= \lim_{t \to 4} \frac{(t-4)(3+1t^2-7)}{(4/t)(4+t)}$

1 FOR FACTORING DENOMINATOR

= -6

1 FOR CANCELLING

The graphs of
$$f$$
 and g are shown on the right.

SCORE: ___/ 5 POINTS

Find $\lim_{x\to 2} [5f(x) - xg(x)]$, showing the proper use of the limit laws to justify your answer.

= $\lim_{|x\to 2|} [5f(x)] - \lim_{|x\to 2|} [xg(x)]$ = $\lim_{|x\to 2|} 5\lim_{|x\to 2|} f(x) - \lim_{|x\to 2|} x\lim_{|x\to 2|} g(x)$ = $\frac{1}{5}(-4) - 2(4)$ = -28

