Math 1A (10:30am - 11:20a	m)
Quiz 3 Version C	
Fri Jan 21, 2011	

SCORE:	/ 30	POINTS

What month is your birthday?	
What are the first 2 digits of your address?	
What are the last 2 digits of your zip code?	
What are the last 2 digits of your DeAnza ID number?	

NO CALCULATORS ALLOWED

SHOW PROPER ALGEBRAIC WORK AND USE PROPER NOTATION

YOU DO NOT NEED TO SHOW THE USE OF THE LIMIT LAWS UNLESS SPECIFICALLY ASKED FOR

State the definition of "derivative (at a point)".

SCORE: /2 POINTS

SEE 7:30 VERSION A

State the definition of "jump discontinuity".

SCORE: /2 POINTS

SEE 7:30 VERSION A

State the Intermediate Value Theorem.

SCORE: ___ / 2 POINTS

SEE 7:30 VERSION A

Let $f(x) = \begin{cases} cx^2 + 20, & \text{if } x < 3 \\ -16, & \text{if } x = 3. \\ 2 - cx^2, & \text{if } x > 3 \end{cases}$

SUBTRACT | POINT IF YOU FOUND |m (cx2+20) SCORE:_/8 POINTS 1X->3

If f is continuous from the right at x = 3, find the value of c. If there is no such value of c, write DNE and explain why. [a]

From
$$f(x) = \lim_{x \to 3^+} (2 - cx^2) = 2 - 9c$$

$$f(3) = -16$$

If c = -1, is f continuous at x = 3? [b] If yes, show that all three conditions of continuity are satisfied. If no, determine the type of discontinuity.

$$\lim_{x\to 3^{+}} f(x) = \lim_{x\to 3^{+}} (2+x^{2}) = 11$$
 $\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (-x^{2}+20) = 11$
 $\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (-x^{2}+20) = 11$
 $\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (-x^{2}+20) = 11$
 $\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (-x^{2}+20) = 11$
 $\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (-x^{2}+20) = 11$

SEE 7:30 VERSION A

Sketch the graph of a function that satisfies the following conditions, or write N/A if no such function exists.

$$f(-1) = -2$$
, $\lim_{x \to -\infty} f(x) = -2$, $\lim_{x \to -2} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$

SCORE: /2 POINTS

Let
$$f(x) = \frac{4x}{x-3}$$
. SCORE: ___/8 POINTS

Find f'(1) using the definition of the derivative (at a point). **DO NOT USE DIFFERENTIATION SHORTCUTS**.

$$f'(1) = \lim_{x \to 1} \frac{4x}{x-3} - (-2)$$

$$= \lim_{x \to 1} \frac{4x + 2(x-3)}{(x-1)(x-3)}$$

$$= \lim_{x \to 1} \frac{6x - 6}{(x-1)(x-3)}$$

$$= \lim_{x \to 1} \frac{6}{x-3}$$

$$= \lim_{x \to 1} \frac{6}{x-3}$$

[b] Find the equation of the tangent line to
$$y = f(x)$$
 at $x = 1$.

$$y-(-2)=-3(x-1)$$

 $y+2=-3(x-1)$, or $y=-3x+1$

$$f'(1) = \lim_{h \to 0} \frac{4(1+h)}{(1+h)-3} - (-2)$$

$$= \lim_{h \to 0} \frac{4+4h}{h-2} + 2$$

$$= \lim_{h \to 0} \frac{4+4h+2(h-2)}{h(h-2)}$$

$$= \lim_{h \to 0} \frac{64}{12h+0} = 1$$

$$= -3$$