Math 1A (7:30am - 8:20am)
Quiz 3 Version D
Fri Jan 21, 2011

What month is your birthday?	
What are the first 2 digits of your address?	
What are the last 2 digits of your zip code?	
What are the last 2 digits of your DeAnza ID	number?

SCORE: / 30 POINTS

NO CALCULATORS ALLOWED

SHOW PROPER ALGEBRAIC WORK AND USE PROPER NOTATION

YOU DO NOT NEED TO SHOW THE USE OF THE LIMIT LAWS UNLESS SPECIFICALLY ASKED FOR

State the definition of "derivative (at a point)".

SCORE: ___/2 POINTS

SEE 7:30 VALSION A

State the definition of "removable discontinuity".

SCORE: / 2 POINTS

SEE 7:30 VERSION B

State the Intermediate Value Theorem.

SCORE: /2 POINTS

SEE 7:30 VERSION A

Let $f(x) = \begin{cases} cx^2 + 20, & \text{if } x < 3 \\ -16, & \text{if } x = 3. \\ 2 - cx^2, & \text{if } x > 3 \end{cases}$

SCORE: ___/8 POINTS

If f is continuous from the left at x = 3, find the value of c. If there is no such value of c, write DNE and explain why. [a]

$$\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (cx^2 + 20) = 9c + 20$$

$$f(3) = -16$$

$$\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (cx^2 + 20) = 9c + 20$$

$$\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (cx^2 + 20) = 9c + 20$$

If c = -2, is f continuous at x = 3? [b]

If yes, show that all three conditions of continuity are satisfied. If no, determine the type of discontinuity.

$$\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{-}} (-2x^{2}+20) = 2$$

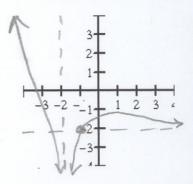
 $\lim_{x\to 3^{+}} f(x) = \lim_{x\to 3^{+}} (2+2x^{2}) = 20$, $\lim_{x\to 3^{+}} f(x)$, $\lim_{x\to 3^{+}} f(x)$

ARE NOT EQUAL,

SEE 7:30 VERSION B

Sketch the graph of a function that satisfies the following conditions, or write N/A if no such function exists.

$$f(-1) = -2$$
, $\lim_{x \to \infty} f(x) = -2$, $\lim_{x \to -2} f(x) = -\infty$ and $\lim_{x \to -\infty} f(x) = \infty$



Let
$$f(x) = \sqrt{x^2 + 5}$$
.

[a] Find f'(2) using the definition of the derivative (at a point). **DO NOT USE DIFFERENTIATION SHORTCUTS.**

$$f'(2) = \lim_{X^2 \to 2} \sqrt{X^2 + 5} - 3$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

$$= \lim_{X \to 2} (X - 2)(\sqrt{X^2 + 5} + 3)$$

ENTIATION SHORTCUTS.

2) = $\lim_{h \to 0} \sqrt{2 + h^2 + 5} - 3$ = $\lim_{h \to 0} \sqrt{h^2 + 4h + 9^2 - 3}$ = $\lim_{h \to 0} \frac{h^2 + 4h}{h(\sqrt{h^2 + 4h + 9} + 3)}$ = $\lim_{h \to 0} \frac{h + 4}{\sqrt{h^2 + 4h + 9} + 3}$ = $\frac{4}{6}$

[b] Find the equation of the tangent line to y = f(x) at x = 2.

$$y-3=\frac{2}{3}(x-2)$$
 or $y=\frac{2}{3}x+\frac{5}{3}$

= 2/3