Math 1A (7:30am - 8:20am)
Quiz 6 Version B
Fri Feb 25, 2011

What month is your birthday?

What are the first 2 digits of your address?

What are the last 2 digits of your zip code?

What are the last 2 digits of your DeAnza ID number?

SCORE: ___ / 30 POINTS

NO CALCULATORS ALLOWED

SHOW PROPER ALGEBRAIC WORK AND USE PROPER NOTATION

state the definition of "critical number".	SCORE:/2 POINTS
a is a critical number of f if a is in the !	DOMAIN OF f. =
$\frac{1}{2}$ AND $f'(a) = 0$ OR	
SUBTRACT & POINT FOR INCORPRET	EXIST
ketch the graph of a function which satisfies all the following properties,	SCORE:/2 POINTS
r explain very briefly why no such function exists.	4+
f is continuous on $[-5, 5]$, f has a local minimum at $x = -1$,	3
f has a local maximum at $x = -3$, f has a local and global maximum at $x = 2$,	2+
and f has no global minimum on $[-5, 5]$.	1+
NO SUCH F. EXTREME VALUE THEOREM, SAYS EVERLY CONTINUOUS FUNCTION ON A CLOSED	-4 -3 -2 -1 1 2 3 4 ±
EVERY CONTINUOUS FUNCTION ON A CLOSED	-2
+ INTERVAL HAS BOTH A GLOBAL MAX & MIN.	-3 -4
2	-1
Chris is driving <u>north</u> along Stelling Road at 24 miles per hour, and Pat is driving <u>west</u> along Stevens	
Boulevard at 45 miles per hour. If Chris is currently 2 miles <u>south</u> of the intersection of Stelling Road at is currently 1 mile <u>west</u> of the intersection, how quickly is the distance between them changing? Ar	
part?	e they getting closer together or farther
PP de = - 24 mi/hr de = + 45	mily FIND dy
12 at	2
y / c	WHEN C=Zmi
2 1	p= lmi
8 dy - A dp. A dc	y=15mi
Py It - 1 It + 2 Cat	J
V5 mi dy = 1 mi . 45 mi + 2 mi (=	-24 mi
the de la	hr)
2 2 2	1 2
$\frac{3}{3} = \frac{3}{9} \frac{mi}{m}$	
1 br 1 2	
1 CETTING CONTRACTOR	
GETTING CLOSER TOG	EIHER)
l l	

$$f(x) = 2x^{\frac{7}{5}} - 7x^{\frac{2}{5}}$$

$$f(x) = \frac{14}{5}x^{\frac{2}{5}} - \frac{14}{5}x^{-\frac{2}{5}}, \quad Dre@x = 0 \in [-1, 3]$$

$$= \frac{14}{5}x^{-\frac{2}{5}}(x-1) = 0 \quad @x = 1$$

$$x \quad f(x)$$

$$= \frac{14}{5}x^{-\frac{2}{5}}(x-1) = 0 \quad @x = 1$$

A street light is mounted at the top of a 10 foot tall pole. A 5 foot tall girl walks in a straight line away from SCORE: ___ / 10 POINTS the pole at 2 feet per second. How fast is the tip of the girl's shadow moving when she is 20 feet from the pole?

2
$$\frac{dx}{dt} = 2 ft/s$$
, want $\frac{dy}{dt}$ when $x = 20 ft$

3 $\frac{y-x}{5ft} = \frac{y}{10ft}$

10 $y - 10x = 5y$
 $y = 2x$

2 $\frac{dy}{dt} = 2 \frac{dx}{dt}$

= $2(2 ft/s)$

= $4 ft/s$