Math 1A (7:30am - 8:20am)
Quiz 7 Version A
Fri Mar 4, 2011

What month is your birthday?
What are the first 2 digits of your address?
What are the last 2 digits of your zip code?
What are the last 2 digits of your DeAnza ID number?

SCORE: ___ / 30 POINTS

NO CALCULATORS ALLOWED

SHOW PROPER ALGEBRAIC WORK AND USE PROPER NOTATION

State the definition of "concave down".

SCORE: ___ / 2 POINTS

State the Mean Value Theorem.

SCORE: ___/2 POINTS

IF
$$f$$
 is continuous on $[a,b]$ and differentiable on (a,b)
Then there exists a value $c \in (a,b)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a}$
Let $f(x) = 9 + 10x^4 - 2x^5$.

[a] Find all critical numbers of f.

$$f'(x) = 40x^3 - 10x^4$$

= $10x^3(4-x) = 0$ @ $x = 0, 4$

[b] For each critical number, determine what the Second Derivative Test tells you about that critical number.

$$f''(x) = 120x^2 - 40x^3$$
,
$$= 40x^2(3-x)$$

$$= f''(0) = 0, \rightarrow ND CONCLUSION$$

$$= f''(4) < 0, \rightarrow LOCAL MAX 0 x = 4, 1$$

[c] Find the inflection points of f .

$$f'' = 0 \otimes x = 0, 3,$$
 $f'' + + + - \frac{1}{2}$
 $40x^2 + 0 + + + + - \frac{1}{2}$

1.P. @ X=3, 1 NO POINTS IF YOU SAID BOTH X=0, 3

Write "OK" if you understand that the graph shows f' and NOT f, [a] but that all the questions below are about f and **NOT** f', and that you must explain your answers to get any credit.

Is f increasing or decreasing on the interval [0, 2]? Explain your answer(s) very briefly. [b]

[c] Find the x – coordinates of all critical numbers of f. Explain your answer(s) very briefly.

Find the x – coordinates of all local maxima of f. Explain your answer(s) very briefly. [d]

Is f concave up or down on the interval [-4, -2]? Explain your answer(s) very briefly. [e]

Find the x – coordinates of all inflection points of f. Explain your answer(s) very briefly. [f]

Does Rolle's Theorem apply to the function $f(x) = \sqrt[3]{x} - \frac{x}{4}$ on the interval [-8, 8]?

SCORE: ___ / 3 POINTS

If yes, find the value of c guaranteed by Rolle's Theorem. If no, explain why not.

Sketch the graph of a **continuous** function that satisfies all the given conditions.

$$f'(x) > 0$$
 if $x < 2$,
 $f'(x) < 0$ if $x > 2$,

$$f''(x) > 0 \text{ if } |x| > 2$$
,

$$f''(x) < 0$$
 if $|x| < 2$

