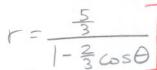
PERSON #2 - Name you asked to be called in class:

SCORE: ___ / 30 POINTS

NO CALCULATORS ALLOWED

YOU MUST SHOW APPROPRIATE WORK TO RECEIVE FULL CREDIT

Use the power reducing formulae to rewrite $\cos^4 x$ in terms of the first powers of cosines.


SCORE: / 3 POINTS

Graph the conic with polar equation
$$r = \frac{5}{3 - 2\cos\theta}$$
 by answering the following questions first. Score: __/11 POLYou must use techniques discussed either in lecture or in the handouts.

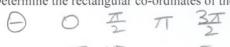
SCORE: / 11 POINTS

[a] Determine the eccentricity and type of the conic.

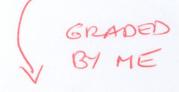
$$r = \frac{5}{3}$$

$$1 - \frac{2}{3}\cos\theta$$

$$e = \frac{2}{3} \Rightarrow \text{ELLIPSE}$$


- POINT EACH

Determine the equation of the directrix. [b]


$$ep = \frac{5}{3} \Rightarrow \frac{3}{3}p = \frac{5}{3} \Rightarrow p = \frac{5}{2}$$

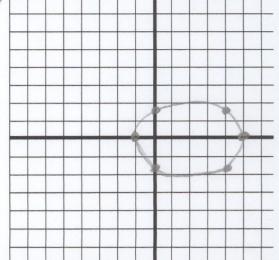
$$x = -\frac{5}{2}$$

Determine the rectangular co-ordinates of the x – and y – intercepts. [c]

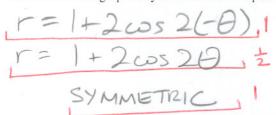
$$(0, \frac{1}{3})(0, -\frac{1}{3})$$

Determine the rectangular co-ordinates of the vertices. [d]

[e]


Determine the rectangular co-ordinates of both foci.

CENTER =
$$\left(\frac{5+-1}{2}, \frac{0+0}{2}\right) = (2,0)$$


Determine the rectangular co-ordinates of the endpoints of both latera recta. [f]

Plot the points you found which lie on the conic, and then sketch the conic. [g]

[a] Determine if the graph is symmetric over the polar axis.

[b] Determine if the graph is symmetric about the pole.

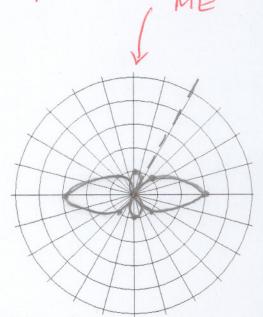
$$r = 1 + 2\cos 2(\pi + \theta)$$
, $r = 1 + 2\cos (2\pi + 2\theta)$, $r = 1 + 2\cos (2\pi + 2\theta)$, $r = 1 + 2\cos 2\pi\cos 2\theta - \sin 2\pi\sin 2\theta$

[c] Determine if the graph is symmetric over $\theta = \frac{\pi}{2}$.

BECAUSE THE GRAPH IS SYMMETRIC OVER THE POLAR AXIS AND THE POLE, IT IS AUTOMATICALLY SYMMETRIC OVER $\Theta = \frac{\pi}{2}$, I

[d] What is the minimum interval of the graph that must be plotted first?

[e] Find all values of θ within the minimum interval at which the graph passes through the pole.


The all values of
$$\theta$$
 within the minimum interval at which the graph passes through the pole.

 $1 + 2\cos 2\Theta = 0$, $1 \neq \cos 2\Theta \leq \frac{\pi}{2} \implies 0 \leq 2\Theta \leq \pi$
 $\cos 2\Theta = -\frac{1}{2}$, $\frac{1}{2}$
 $2\Theta = \frac{2\pi}{3}$
 $\Theta = \frac{\pi}{2}$

[f] Find the maximum and minimum values of r.

[g] Find r and θ for all the quarter period points in the minimum interval.

[h] Plot the important points and graph the function.

