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, where )(xN  and )(xD  are both polynomials, and no cancellation is possible

Some rational integrands require partial fractions, others do not, and still others are a combination of the two.
The process below outlines when you should and should not use partial fractions.

If degree of )(xN degree of )(xD

Perform polynomial long division
Rewrite integrand as polynomial + remainder with degree of )(xN  degree of )(xD

Use process below to find the integral of 
)(xD

remainder
 (ie. set remainderxN )(  and continue)

If )()( xDkxN  (ie. numerator is constant multiple of derivative of denominator) TYPE 1

Let )(xDu   & perform u substitution

(or use guess & check – antiderivative is a multiple of )(ln xD )

If degree of 1)( xD (ie. denominator is linear)

Let )(xDu   & perform u substitution

(or use guess & check – antiderivative is a multiple of )(ln xD )

If degree of 2)( xD and is irreducible

(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complex roots)

If cxN )(  (ie. numerator is constant): TYPE 2

Factor leading coefficient from )(xD  (ie. so denominator starts with 2x )

Complete the square for 22)()( ahxxD 
Factor 2a  from denominator

Let 
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hx
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
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If baxxN )(  (ie. numerator is linear): TYPE 3

Use technique similar to partial fractions shortcut to rewrite numerator as BxDA  )(
(ie. constant multiple of derivative of denominator + constant)
Split integrand into integrand of TYPE 1 + integrand of TYPE 2
Use processes above (NOTE: no absolute values required in ))(ln( xD )

All other cases require partial fractions

Factor )(xD  into product of linear and irreducible quadratic factors
(ie. write denominator as product of

linear factors – one for each real root (whether rational or irrational)
quadratic factors – one for each pair of complex conjugate roots)



Perform partial fractions decomposition
NOTE: for irreducible quadratic factors with denominator cbxaxxd  2)(

(or powers of these factors, ie. nxd )]([  or ncbxax )( 2  )
write numerator in BxdA  )(  format for TYPE 3 to save work later on

For all partial fractions with linear and irreducible quadratic denominators:
Use processes above

For all partial fractions with denominator nn baxxd )()]([   (ie. power of linear factor):
Let baxu   & perform u substitution

(or use guess & check – antiderivative is a multiple of 
1)(

1
 nbax

)

For all partial fractions with denominator nn cbxaxxd )()]([ 2   (ie. power of irreducible quadratic factor):
Split integrand into integrand with numerator )(xdA   + integrand with numerator B
For first integrand:

Let cbxaxu  2  & perform u substitution

(or use guess & check – antiderivative is a multiple of 
12 )(

1
 ncbxax

)

For second integrand:
Factor leading coefficient from cbxax 2  (ie. so irreducible quadratic starts with 2x )
Complete the square for 222 )( khxCBxx 
Let tankhx   & perform trigonometric substitution
NOTE: This is the hardest type – there will be no required problems of this type on tests

Practice against the following examples:
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