$N(\mathbf{x})$	
To find $\int \frac{N(x)}{D(x)} dx$, where $N(x)$ and $D(x)$ are both polynomials, and no cancellation is pos	sible
Some rational integrands require partial fractions, others do not, and still others are a combination The process below outlines when you should and should not use partial fractions.	of the two.
If degree of $N(x) \ge$ degree of $D(x)$	
Perform polynomial long division Rewrite integrand as polynomial + remainder with degree of $N(x)$ < degree of $D(x)$	
Use process below to find the integral of $\frac{remainder}{D(x)}$ (i.e. set $N(x) = remainder$ and continue)	
If $N(x) = k \cdot D'(x)$ (i.e. numerator is constant multiple of derivative of denominator)	TYPE 1
Let $u = D(x)$ & perform u – substitution	
(or use guess & check – antiderivative is a multiple of $\ln D(x) $)	
If degree of $D(x) = 1$ (ie. denominator is linear)	
Let $u = D(x)$ & perform u – substitution	
(or use guess & check – antiderivative is a multiple of $\ln D(x) $)	
If degree of $D(x) = 2$ and is irreducible	
If degree of $D(x) = 2$ and is include to be	
(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complete $(1 - 2)^{-1}$	ex roots)
	ex roots) TYPE 2
(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complete	ex roots) <mark>TYPE 2</mark>
(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complete If $N(x) = c$ (ie. numerator is constant):	ex roots) <mark>TYPE 2</mark>
(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complete If $N(x) = c$ (ie. numerator is constant): Factor leading coefficient from $D(x)$ (ie. so denominator starts with x^2) Complete the square for $D(x) = (x + h)^2 + a^2$ Factor a^2 from denominator	ex roots) TYPE 2
(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complete If $N(x) = c$ (ie. numerator is constant): Factor leading coefficient from $D(x)$ (ie. so denominator starts with x^2) Complete the square for $D(x) = (x + h)^2 + a^2$ Factor a^2 from denominator Let $u = \frac{x + h}{a}$ & perform u – substitution	ex roots) TYPE 2
(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complete If $N(x) = c$ (ie. numerator is constant): Factor leading coefficient from $D(x)$ (ie. so denominator starts with x^2) Complete the square for $D(x) = (x + h)^2 + a^2$ Factor a^2 from denominator	ex roots) TYPE 2
(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complete If $N(x) = c$ (ie. numerator is constant): Factor leading coefficient from $D(x)$ (ie. so denominator starts with x^2) Complete the square for $D(x) = (x + h)^2 + a^2$ Factor a^2 from denominator Let $u = \frac{x + h}{a}$ & perform u – substitution	ex roots) TYPE 2
(ie. denominator is quadratic with negative discriminant, so denominator has no real roots / only complete If $N(x) = c$ (ie. numerator is constant): Factor leading coefficient from $D(x)$ (ie. so denominator starts with x^2) Complete the square for $D(x) = (x + h)^2 + a^2$ Factor a^2 from denominator Let $u = \frac{x + h}{a}$ & perform u – substitution (or use $\int \frac{1}{(x + h)^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x + h}{a}$)	TYPE 2

Factor D(x) into product of linear and irreducible quadratic factors (ie. write denominator as product of linear factors – one for each real root (whether rational or irrational) quadratic factors – one for each pair of complex conjugate roots) Perform partial fractions decomposition

NOTE: for irreducible quadratic factors with denominator $d(x) = ax^2 + bx + c$

(or powers of these factors, ie. $[d(x)]^n$ or $(ax^2 + bx + c)^n$)

write numerator in $A \cdot d'(x) + B$ format for **TYPE 3** to save work later on

For all partial fractions with linear and irreducible quadratic denominators:

Use processes above

For all partial fractions with denominator $[d(x)]^n = (ax+b)^n$ (i.e. power of linear factor):

Let u = ax + b & perform u – substitution

(or use guess & check – antiderivative is a multiple of $\frac{1}{(ax+b)^{n-1}}$)

For all partial fractions with denominator $[d(x)]^n = (ax^2 + bx + c)^n$ (ie. power of irreducible quadratic factor): Split integrand into integrand with numerator $A \cdot d'(x)$ + integrand with numerator B For first integrand:

Let $u = ax^2 + bx + c$ & perform u – substitution

(or use guess & check – antiderivative is a multiple of $\frac{1}{(ax^2 + bx + c)^{n-1}}$)

For second integrand:

Factor leading coefficient from $ax^2 + bx + c$ (ie. so irreducible quadratic starts with x^2) Complete the square for $x^2 + Bx + C = (x + h)^2 + k^2$

Let $x + h = k \tan \theta$ & perform trigonometric substitution

NOTE: This is the hardest type – there will be no required problems of this type on tests

Practice against the following examples:

$$\begin{aligned} \mathbf{TYPE 1} \qquad \int \frac{7}{3x+8} dx &= \frac{7}{3} \ln|3x+8| + C \\ \mathbf{TYPE 1} \qquad \int \frac{6-9x}{3x^2-4x-4} dx &= -\frac{3}{2} \ln|3x^2-4x-4| + C \\ \mathbf{TYPE 2} \qquad \int \frac{5}{4x^2+24x+52} dx &= \frac{5}{4} \int \frac{1}{x^2+6x+13} dx &= \frac{5}{4} \int \frac{1}{(x+3)^2+2^2} dx &= \frac{5}{8} \tan^{-1} \frac{x+3}{2} + C \\ \mathbf{TYPE 3} \qquad \int \frac{5x-7}{x^2+8x+25} dx &= \int \frac{\frac{5}{2}(2x+8)-27}{x^2+8x+25} dx &= \frac{5}{2} \int \frac{2x+8}{x^2+8x+25} dx - 27 \int \frac{1}{(x+4)^2+3^2} dx \\ &= \frac{5}{2} \ln(x^2+8x+25) - 9 \tan^{-1} \frac{x+4}{3} + C \\ \mathbf{MIXED} \qquad \int \frac{-20x-12}{(x+1)^2(x^2+4x+7)} dx &= \int \left(\frac{-6}{x+1} + \frac{2}{(x+1)^2} + \frac{3(2x+4)+4}{x^2+4x+7}\right) dx \\ &= \int \frac{-6}{x+1} dx + \int \frac{2}{(x+1)^2} dx + 3 \int \frac{2x+4}{x^2+4x+7} dx + \int \frac{4}{(x+2)^2 + (\sqrt{3})^2} dx \\ &= -6 \ln|x+1| - \frac{2}{x+1} + 3 \ln(x^2+4x+7) + \frac{4}{\sqrt{3}} \tan^{-1} \frac{x+2}{\sqrt{3}} + C \\ \mathbf{MIXED} \qquad \int \frac{3x^3 - 11x^2 - 49x}{x^2 - 5x - 6} dx &= \int \left(3x+4 - \frac{6}{x-6} - \frac{5}{x+1}\right) dx \\ &= \frac{3}{2}x^2 + 4x - 6 \ln|x-6| - 5 \ln|x+1| + C \end{aligned}$$